欧氏空间内积定义_MP91:对偶空间、内积与辛结构

本文探讨了对偶空间中的辛结构,详细介绍了由内积构造的辛形式,特别是在实Banach空间和复空间中的Hermite内积。此外,还讨论了自伴算子在量子力学中的作用,揭示了它们与辛理论的联系。
摘要由CSDN通过智能技术生成

28bda5ae6b2f9b8d7d97efaa16668f81.png

对偶空间的辛结构


考虑辛形式的推广。实Banach空间

上有非退化的反对称连续双线性形式:

由这个形式可以诱导出连续线性的降(flat)映射:

使得

。这样的非退化反对称双线性形式称为
辛形式(symplectic form)。定义了辛形式的向量空间称为辛空间。

线性空间

及其对偶空间
的Cartesian积上可以定义
正则辛结构(canonical symplectic form)

具体到实线性空间

,若
有基
那么
上有对偶基
,使得两边的基向量内积得到满足Kronecker符号(依据对偶基的定义)。
的自然基就是由
合成的
维的基,显然
。自然可以用坐标表示:
。按照(3)构造正则辛结构:

其中

是辛矩阵。

进一步考虑无穷维情形。将

上的光滑实函数空间记为
。为保证积分的有限性,取
上有紧支集的光滑密度空间为
,这是对偶空间(证略)。密度
写为体积元/微分
,那么可以借由微分形式的积分构造辛结构

内积构造的辛结构

(3)中正负号交替出现的项

是双线性映射,对其最自然的描述就是内积,即:

应用到(3),得到

Hermite内积

进一步考虑复空间的Hermite内积,自然联想到

,根据我们在 MP88:辛(symplectic)的起源(3):辛矩阵 中的讨论,Hermite内积的虚部就是一个辛结构:

显然Hermite内积包含了(7)的结构。

将Hermite内积推广到平方可积函数空间

上对测度的积分:

所构成的复Hilbert空间,这就是量子态所处的空间。在 MP39:量子力学中的内积结构 中曾经讨论过自伴算子和复共轭内积在量子力学中的联系,现在我们从辛的角度来继续这个问题。

自伴算子

Hermite内积的辛结构,使得复共轭的自伴算子可以用辛的方法研究。先看实的情形。有限维的实线性算子/同态可以用实矩阵表示:

,其转置则表示了
。有限维线性空间及其对偶空间同构,于是转置矩阵
也可以视为对偶空间的拉回(pull-back)映射
,在实向量的自然内积意义下:

更直观的:

把实转置矩阵的这些性质推广到泛函分析中的伴随算子,并且只考虑线性空间及其对偶空间的映射,那么Hilbert空间上的有界算子若满足

则称为
自伴(self-adjoint)算子。

复方矩阵

可以视为有限维复线性空间的线性算子/同态,若满足

即矩阵等于其共轭转置(conjugate transpose),称为Hermite(厄米、厄尔米特、Hermitian)的。类似以上实矩阵的讨论,若Hermite矩阵是自伴的,则内积的结构对应于共轭的Hermite内积(8),于是产生了自然的辛结构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值