
对偶空间的辛结构
考虑辛形式的推广。实Banach空间
由这个形式可以诱导出连续线性的降(flat)映射:
使得
线性空间
具体到实线性空间
其中
进一步考虑无穷维情形。将
内积构造的辛结构
(3)中正负号交替出现的项
应用到(3),得到
Hermite内积
进一步考虑复空间的Hermite内积,自然联想到
显然Hermite内积包含了(7)的结构。
将Hermite内积推广到平方可积函数空间
所构成的复Hilbert空间,这就是量子态所处的空间。在 MP39:量子力学中的内积结构 中曾经讨论过自伴算子和复共轭内积在量子力学中的联系,现在我们从辛的角度来继续这个问题。
自伴算子
Hermite内积的辛结构,使得复共轭的自伴算子可以用辛的方法研究。先看实的情形。有限维的实线性算子/同态可以用实矩阵表示:
更直观的:
把实转置矩阵的这些性质推广到泛函分析中的伴随算子,并且只考虑线性空间及其对偶空间的映射,那么Hilbert空间上的有界算子若满足
复方矩阵
即矩阵等于其共轭转置(conjugate transpose),称为Hermite(厄米、厄尔米特、Hermitian)的。类似以上实矩阵的讨论,若Hermite矩阵是自伴的,则内积的结构对应于共轭的Hermite内积(8),于是产生了自然的辛结构。