对偶空间的辛结构
考虑辛形式的推广。实Banach空间
上有非退化的反对称连续双线性形式:
由这个形式可以诱导出连续线性的降(flat)映射:
使得
。这样的非退化反对称双线性形式称为
辛形式(symplectic form)。定义了辛形式的向量空间称为辛空间。
线性空间
及其对偶空间
的Cartesian积上可以定义
正则辛结构(canonical symplectic form):
具体到实线性空间
,若
有基
那么
上有对偶基
,使得两边的基向量内积得到满足Kronecker符号(依据对偶基的定义)。
的自然基就是由
和
合成的
维的基,显然
。自然可以用坐标表示:
。按照(3)构造正则辛结构:
其中
是辛矩阵。
进一步考虑无穷维情形。将
上的光滑实函数空间记为
。为保证积分的有限性,取
上有紧支集的光滑密度空间为
,这是对偶空间(证略)。密度
写为体积元/微分
,那么可以借由微分形式的积分构造辛结构
内积构造的辛结构
(3)中正负号交替出现的项
是双线性映射,对其最自然的描述就是内积,即:
应用到(3),得到
Hermite内积
进一步考虑复空间的Hermite内积,自然联想到
,根据我们在 MP88:辛(symplectic)的起源(3):辛矩阵 中的讨论,Hermite内积的虚部就是一个辛结构:
显然Hermite内积包含了(7)的结构。
将Hermite内积推广到平方可积函数空间
上对测度的积分:
所构成的复Hilbert空间,这就是量子态所处的空间。在 MP39:量子力学中的内积结构 中曾经讨论过自伴算子和复共轭内积在量子力学中的联系,现在我们从辛的角度来继续这个问题。
自伴算子
Hermite内积的辛结构,使得复共轭的自伴算子可以用辛的方法研究。先看实的情形。有限维的实线性算子/同态可以用实矩阵表示:
,其转置则表示了
。有限维线性空间及其对偶空间同构,于是转置矩阵
也可以视为对偶空间的拉回(pull-back)映射
,在实向量的自然内积意义下:
更直观的:
把实转置矩阵的这些性质推广到泛函分析中的伴随算子,并且只考虑线性空间及其对偶空间的映射,那么Hilbert空间上的有界算子若满足
则称为
自伴(self-adjoint)算子。
复方矩阵
可以视为有限维复线性空间的线性算子/同态,若满足
即矩阵等于其共轭转置(conjugate transpose),称为Hermite(厄米、厄尔米特、Hermitian)的。类似以上实矩阵的讨论,若Hermite矩阵是自伴的,则内积的结构对应于共轭的Hermite内积(8),于是产生了自然的辛结构。