一:什么是卷积
离散卷积的数学公式可以表示为如下形式:
f(x) = - 其中C(k)代表卷积操作数,g(i)代表样本数据, f(x)代表输出结果。
举例如下:
假设g(i)是一个一维的函数,而且代表的样本数为G = [1,2,3,4,5,6,7,8,9]
假设C(k)是一个一维的卷积操作数, 操作数为C=[-1,0,1]
则输出结果f(x)可以表示为 F=[1,2,2,2,2,2,2,2,1] //边界数据未处理
以上只是一维的情况下,当对一幅二维数字图像加以卷积时,其数学意义可以解释如下:
源图像是作为输入源数据,处理以后要的图像是卷积输出结果,卷积操作数作为Filter
在XY两个方向上对源图像的每个像素点实施卷积操作。如图所示:
粉红色的方格每次在X/Y前进一个像素方格,就会产生一个新的输出像素,图中深蓝色的代
表要输出的像素方格,走完全部的像素方格,就得到了所有输出像素。
图中,粉红色的矩阵表示卷积操作数矩阵,黑色表示源图像– 每个方格代表一个像素点。
二:卷积在数字图像处理中应用
一副数字图像可以看作一个二维空间的离散函数可以表示为f(x, y), 假设有对于二维卷积操
作函数C(u, v) ,则会产生输出图像g(x, y) = f(x, y) *C(u,v), 利用卷积可以实现对图像模糊处理,边缘检测,产生轧花效果的图像。
一个简单的数字图像卷积处理流程可以如下:<