python图像卷积_图像处理——卷积原理、二维卷积python实现

本文介绍了卷积的原理,包括一维和二维卷积的数学表示,并通过Python的scipy库展示了如何对图像进行二维卷积处理,利用卷积核实现图像模糊和边缘检测。此外,还讨论了卷积在数字图像处理中的应用和边界处理问题。
摘要由CSDN通过智能技术生成

一:什么是卷积

离散卷积的数学公式可以表示为如下形式:

f(x) =  - 其中C(k)代表卷积操作数,g(i)代表样本数据, f(x)代表输出结果。

举例如下:

假设g(i)是一个一维的函数,而且代表的样本数为G = [1,2,3,4,5,6,7,8,9]

假设C(k)是一个一维的卷积操作数, 操作数为C=[-1,0,1]

则输出结果f(x)可以表示为 F=[1,2,2,2,2,2,2,2,1]  //边界数据未处理

以上只是一维的情况下,当对一幅二维数字图像加以卷积时,其数学意义可以解释如下:

源图像是作为输入源数据,处理以后要的图像是卷积输出结果,卷积操作数作为Filter

在XY两个方向上对源图像的每个像素点实施卷积操作。如图所示:

粉红色的方格每次在X/Y前进一个像素方格,就会产生一个新的输出像素,图中深蓝色的代

表要输出的像素方格,走完全部的像素方格,就得到了所有输出像素。

图中,粉红色的矩阵表示卷积操作数矩阵,黑色表示源图像– 每个方格代表一个像素点。

二:卷积在数字图像处理中应用

一副数字图像可以看作一个二维空间的离散函数可以表示为f(x, y), 假设有对于二维卷积操

作函数C(u, v) ,则会产生输出图像g(x, y) = f(x, y) *C(u,v), 利用卷积可以实现对图像模糊处理,边缘检测,产生轧花效果的图像。

一个简单的数字图像卷积处理流程可以如下:<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值