树形结构叶子节点的作用_树形结构的算法

22287d50f09af825273c927d238e004d.png

树形结构是算法中很常见的一种结构,正好工作中遇到了,就研究一下遍历深度查找节点等算法。

遍历

深度优先遍历的思想是从顶点开始,访问其第一个未被访问的邻节点,然后以该邻节点为顶点,重复以上步骤,直到所有节点被访问完。

广度优先遍历的思想是从顶点开始,访问其所有未被访问的邻节点,然后依次访问这些节点的子节点,直到所有节点被访问完。

538b3d58d37b7b6c59987bd2ce5871c8.png

如上图,按深度优先遍历的顺序为1、2、3、4、5、6,按广度优先遍历的顺序为1、2、5、3、4、6

有如下数组,将其展开为一维数组[1,2,3,4,5,6,7]

let arr = [
    [
        1,
        [
            2,
            3
        ]
    ],
    [
        4,
        [
            [
                5,
                6
            ],
            7
        ]
    ]
];

深度优先

function deepVisit(data, newData = []){
    for(var i = 0; i < data.length; i++){
        if(data[i] instanceof Array && data[i].length){
            newData.concat(...deepVisit(data[i], newData))
        }else{
            newData.push(data[i])
        }
    }
    return newData
}
deepVisit(arr)//[1, 2, 3, 4, 5, 6, 7]

广度优先

function wideVisit(data){
    let over = true
    for(var i = 0; i < data.length; i++){
        if(data[i] instanceof Array && data[i].length){
            over = false
            data.splice(i,1,...data[i])
        }
    }
    return over ? data : ideVisit(data)
}
wideVisit(arr)//[1, 2, 3, 4, 5, 6, 7]

标记和查找

有如下结构,标记每个节点的深度、查找深度为n的所有节点、查找所有的叶子节点(末端节点)。

let arr = [
    {
        a:1,
        children: [
            {
                a:2,
                children: [
                    {
                        a:3
                    },
                    {
                        a:4
                    }
                ]
            }
        ]
    },
    {
        a:5,
        children: [
            {
                a:6
            }
        ]
    }
];

数组的树结构如图所示

538b3d58d37b7b6c59987bd2ce5871c8.png

其中3、4、6为叶子节点。

下面对arr数组进行遍历,给每个节点编上号,并标示其层级。

标记深度和编号

function mark(data, keyNode = 1, depth = 1){
    for(var i = 0; i < data.length; i++){
        data[i].keyNode = keyNode++
        data[i].depth = depth
        if(data[i].children && data[i].children.length){
            let result = mark(data[i].children, keyNode, depth+1)
            keyNode = result.keyNode
        }
    }
    return {
        keyNode: keyNode
    }
}
mark(arr)
console.log(arr)

运行结果如下,arr的每个节点已经被编号用keyNode字段标示并用depth字段标示深度。

[
    {
        "a": 1,
        "children": [
            {
                "a": 2,
                "children": [
                    {
                        "a": 3,
                        "keyNode": 3,
                        "depth": 3
                    },
                    {
                        "a": 4,
                        "keyNode": 4,
                        "depth": 3
                    }
                ],
                "keyNode": 2,
                "depth": 2
            }
        ],
        "keyNode": 1,
        "depth": 1
    },
    {
        "a": 5,
        "children": [
            {
                "a": 6,
                "keyNode": 6,
                "depth": 2
            }
        ],
        "keyNode": 5,
        "depth": 1
    }
]

查找叶子节点

function findLeaf(data, leaf = []){
    for(var i = 0; i < data.length; i++){
        if(data[i].children && data[i].children.length){
            let result = findLeaf(data[i].children, leaf)
            leaf.concat(...leaf)
        }else{
            leaf.push(data[i])
        }
    }
    return leaf
}
console.log(findLeaf(arr))

运行结果如下,即所有叶子节点的集合。

[
    {
        "a": 3
    },
    {
        "a": 4
    },
    {
        "a": 6
    }
]

查找keyNode为n的节点

function findNode(data, keyNode){
    for(var i = 0; i < data.length; i++){
        if(data[i].keyNode === keyNode){
            return data[i]
        }
        if(data[i].children && data[i].children.length){
            return findNode(data[i].children, keyNode)
        }
    }
    return {}
}
deepVisit(arr)
console.log(findNode(arr,4))

运行结果如下。

{
    "a": 4,
    "keyNode": 4,
    "depth": 3
}

查找深度为n的节点

function findNode(data, depth, curDepth = 1, result = []){
    for(var i = 0; i < data.length; i++){
        if(curDepth === depth){
            result.push(data[i])
        }else if(data[i].children && data[i].children.length){
            findNode(data[i].children, depth, curDepth+1, result)
        }
    }
    return result
}
console.log(findNode(arr,2))

运行结果如下。

[
    {
        "a": 2,
        "children": [
            {
                "a": 3
            },
            {
                "a": 4
            }
        ]
    },
    {
        "a": 6
    }
]

以上均是运用递归思想,通过传参和返回值的形式保留每一步的运算结果,理解了作用域和函数的返回值,那遍历树结构就不复杂了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值