python mro算法_Python多重继承问题之MRO和C3算法

本文介绍了Python中多重继承的问题,特别是方法解析顺序(MRO)和C3算法。C3算法确保了在多继承时保持继承拓扑的一致性、遵循局部优先原则和单调性。通过实例详细解释了C3算法的工作原理,并提供了Python实现C3 MRO的代码示例,以及如何使用内置的`.mro()`方法来查看类的MRO顺序。
摘要由CSDN通过智能技术生成

多继承、 MRO 及 C3算法关系

在计算机科学中,C3算法主要用于确定多重继承时,子类应该继承哪一个父类的方法,即方法解析顺序(Method Resolution Order,MRO)。

C3算法实现了三种重要特性:

保持继承拓扑图的一致性。

保证局部优先原则(比如A继承C,C继承B,那么A读取父类方法,应该优先使用C的方法而不是B的方法)。

保证单调性原则(即子类不改变父类的方法搜索顺序)。

为什么采用C3算法

C3主要用于在多继承时判断继承调用的路径(来自于哪个类)。在Python2.3之前是基于深度优先算法,为了解决原来基于深度优先搜索算法不满足本地优先级,和单调性以及继承不清晰的问题,从Python2.3起应用了新的C3算法。 在Python官网的The Python 2.3 Method Resolution Order中作者举了例子,说明这一情况。

F=type('Food', (), {remember2buy:'spam'})

E=type('Eggs', (F,), {remember2buy:'eggs'})

G=type('GoodFood', (F,E), {})

根据本地优先级在调用G类对象属性时应该优先查找F类,但是在Python2.3之前的算法给出的顺序是GEFO,而在C3算法中通过阻止类层次不清晰的声明来解决这一问题,以上声明在C3算法中就是非法的。

C3算法简介

判断mro要先确定一个线性序列,然后查找路径由由序列中类的顺序决定。所以C3算法就是生成一个线性序列。如果继承至一个基类:

class B(A)

这时B的mro序列为[B,A]

如果继承至多个基类:

class B(A1,A2,...,An)

这时B的mro序列:

mro(B) = [B] + merge(mro(A1), mro(A2),...,mro(An), [A1,A2,...,An])

merge操作就是C3算法的核心,是递归运算。

遍历执行merge操作的序列,如果一个序列的第一个元素,在其他序列中也是第一个元素,或不在其他序列出现,则从所有执行merge操作序列中删除这个元素,合并到当前的mro中。merge操作后的序列,递归地执行merge操作,直到merge操作的序列为空。

如果merge操作的序列无法为空,则说明不合法。

例子1:

class A(object):pass

class B(object):pass

class C(object):pass

class E(A,B):pass

class F(B,C):pass

class G(E,F):pass

上面代码中A、B、C都继承至一个基类,所以mro序列依次为[A,O]、[B,O]、[C,O]

mro(E) = [E] + merge(mro(A), mro(B), [A,B])

= [E] + merge([A,O], [B,O], [A,B])

执行merge操作的序列为[A,O]、[B,O]、[A,B]。 A是序列[A,O]中的第一个元素,在序列[B,O]中不出现,在序列[A,B]中也是第一个元素,所以从执行merge操作的序列([A,O]、[B,O]、[A,B])中删除A,合并到当前mro,[E]中。

mro(E) = [E,A] + merge([O], [B,O], [B])

再执行merge操作,O是序列[O]中的第一个元素,但O在序列[B,O]中出现并且不是其中第一个元素。继续查看[B,O]的第一个元素B,B满足条件,所以从执行merge操作的序列中删除B,合并到[E, A]中。

mro(E) = [E,A,B] + merge([O], [O])

= [E,A,B,O]

同理,

mro(F) = [F] + merge(mro(B), mro(C), [B,C])

= [F] + merge([B,O], [C,O], [B,C])

= [F,B] + merge([O], [C,O], [C])

= [F,B,C] + merge([O], [O])

= [F,B,C,O]

mro(G) = [G] + merge(mro[E], mro[F], [E,F])

= [G] + merge([E,A,B,O], [F,B,C,O], [E,F])

= [G,E] + merge([A,B,O], [F,B,C,O], [F])

= [G,E,A] + merge([B,O], [F,B,C,O], [F])

= [G,E,A,F] + merge([B,O], [B,C,O])

= [G,E,A,F,B] + merge([O], [C,O])

= [G,E,A,F,B,C] + merge([O], [O])

= [G,E,A,F,B,C,O]

Wiki有一个Python版本的C3算法:

def c3MRO(cls):

if cls is object:

# 讨论假设顶层基类为object,递归终止

return [object]

# 构造C3-MRO算法的总式,递归开始

mergeList = [c3MRO(baseCls) for baseCls in cls.__bases__]

mergeList.append(list(cls.__bases__))

mro = [cls] + merge(mergeList)

return mro

def merge(inLists):

if not inLists:

# 若合并的内容为空,返回空list

# 配合下文的排除空list操作,递归终止

return []

# 遍历要合并的mro

for mroList in inLists:

# 取head

head = mroList[0]

# 遍历要合并的mro(与外一层相同),检查尾中是否有head

### 此处也遍历了被取头的mro,严格地来说不符合标准算法实现

### 但按照多继承中地基础规则(一个类只能被继承一次),

### 头不可能在自己地尾中,无影响,若标准实现,反而增加开销

for cmpList in inLists[inLists.index(mroList) + 1:]:

if head in cmpList[1:]:

break

else:

# 筛选出好head

nextList = []

for mergeItem in inLists:

if head in mergeItem:

mergeItem.remove(head)

if mergeItem:

# 排除空list

nextList.append(mergeItem)

# 递归开始

return [head] + merge(nextList)

else:

# 无好head,引发类型错误

raise TypeError

验证上述算法的正确性,

class A(object):pass

class B(object):pass

class C(object):pass

class E(A,B):pass

class F(B,C):pass

class G(E,F):pass

print([i.__name__ for i in c3MRO(G)])

## ['G', 'E', 'A', 'F', 'B', 'C', 'object']

在Python3下,如果想要查看继承顺序的话,更简单,每个类都有一个cls.mro()的方法。比如上面的例子,直接执行G.mro()就会打印mro list。

例子2

再看一个复杂的例子:

class Type(type):

def __repr__(cls):

return cls.__name__

A = Type('A', (object,), {})

B = Type('B', (object,), {})

C = Type('C', (object,), {})

D = Type('D', (object,), {})

E = Type('E', (object,), {})

K1 = Type('K1', (A, B, C), {})

K2 = Type('K2', (D, B, E), {})

K3 = Type('K3', (D, A), {})

Z = Type('Z', (K1, K2,K3), {})

我们根据上面的继承关系可以画出继承图:

img

你可以尝试着自己计算一下mro list,当然,最后你需要用上面的算法或者class自带的.mro()进行验证。

print(Z.mro()) # [Z, K1, K2, K3, D, A, B, C, E, ]

print([i.__name__ for i in c3MRO(Z)])

# ['Z', 'K1', 'K2', 'K3', 'D', 'A', 'B', 'C', 'E', 'object']

以上!

参考

van Rossum, Guido. Method Resolution Order. The History of Python. 2010-06-23 [2018-01-18].

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值