labview霍夫曼编码_哈夫曼(huffman)树和哈夫曼编码

本文详细介绍了哈夫曼树的概念、性质以及构造过程,重点讲述了如何使用哈夫曼编码进行数据压缩,强调了编码的唯一性和最小冗余性。通过实例展示了构建哈夫曼树的过程,并给出了哈夫曼编码的算法实现,最后讨论了树的计数问题。
摘要由CSDN通过智能技术生成

哈夫曼树

哈夫曼树也叫最优二叉树(哈夫曼树)

问题:什么是哈夫曼树?

例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80~89分: B,70~79分: C,60~69分: D,<60分: E。

if (a < 60){

b = 'E';

}

else if (a < 70) {

b =‘D’;

}

else if (a<80) {

b =‘C’;

}

else if (a<90){

b =‘B’;

}

else{

b =‘A’;

}

判别树:用于描述分类过程的二叉树。

如果每次输入量都很大,那么应该考虑程序运行的时间

如果学生的总成绩数据有10000条,则5%的数据需 1 次比较,15%的数据需 2 次比较,40%的数据需 3 次比较,40%的数据需 4 次比较,因此 10000 个数据比较的

次数为:  10000 (5%+2×15%+3×40%+4×40%)=31500次

此种形状的二叉树,需要的比较次数是:10000 (3×20%+2×80%)=22000次,显然:两种判别树的效率是不一样的。

问题:能不能找到一种效率最高的判别树呢?

那就是哈夫曼树

回忆树的基本概念和术语

路径:若树中存在一个结点序列k1,k2,…,kj,使得ki是ki+1的双亲,则称该结点序列是从k1到kj的一条路径。

路径长度:等于路径上的结点数减1。

结点的权:在许多应用中,常常将树中的结点赋予一个有意义的数,称为该结点的权。

结点的带权路径长度:是指该结点到树根之间的路径长度与该结点上权的乘积。

树的带权路径长度:树中所有叶子结点的带权路径长度之和,通常记作:

其中,n表示叶子结点的数目,wi和li分别表示叶子结点ki的权值和树根结点到叶子结点ki之间的路径长度。

赫夫曼树(哈夫曼树,huffman树)定义:

在权为w1,w2,…,wn的n个叶子结点的所有二叉树中,带权路径长度WPL最小的二叉树称为赫夫曼树或最优二叉树。

例:有4 个结点 a, b, c, d,权值分别为 7, 5, 2, 4,试构造以此 4 个结点为叶子结点的二叉树。

WPL=7´2+5´2+2´2+4´2= 36

WPL=7´3+5´3+2´1+4´2= 46

WPL=7´1+5´2+2´3+4´3= 35

WPL=7´1+5´2+2´3+4´3= 35

后两者其实就是最有二叉树(也就是哈夫曼树)

哈夫曼树的构造(哈夫曼算法)

1.根据给定的n个权值{w1,w2,…,wn}构成二叉树集合F={T1,T2,…,Tn},其中每棵二叉树Ti中只有一个带权为wi的根结点,其左右子树为空.

2.在F中选取两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为左右子树根结点的权值之和.

3.在F中删除这两棵树,同时将新的二叉树加入F中.

4.重复2、3,直到F只含有一棵树为止.(得到哈夫曼树)

例:有4 个结点 a, b, c, d,权值分别为 7, 5, 2, 4,构造哈夫曼树。

根据给定的n个权值{w1,w2,…,wn}构成二叉树集合F={T1,T2,…,Tn},其中每棵二叉树Ti中只有一个带权为wi的根结点,其左右子树为空.

在F中选取两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为左右子树根结点的权值之和.

在F中删除这两棵树,同时将新的二叉树加入F中.

重复,直到F只含有一棵树为止.(得到哈夫曼树)

关于哈夫曼树的注意点:

1、满二叉树不一定是哈夫曼树

2、哈夫曼树中权越大的叶子离根越近  (很好理解,WPL最小的二叉树)

3、具有相同带权结点的哈夫曼树不惟一

4、哈夫曼树的结点的度数为 0 或 2, 没有度为 1 的结点。

5、包含 n 个叶子结点的哈夫曼树中共有 2n – 1 个结点。

6、包含 n 棵树的森林要经过 n–1 次合并才能形成哈夫曼树,共产生 n–1 个新结点

再看一个例子:如权值集合W={7,19,2,6,32,3,21,10 }构造赫夫曼树的过程。

根据给定的n个权值{w1,w2,…,wn}构成二叉树集合F={T1,T2,…,Tn},其中每棵二叉树Ti中只有一个带权为wi的根结点,其左右子树为空.

在F中选取两棵根结点权值最小的树

作为左右子树构造一棵新的二叉树,置新的二叉树的根结点的权值为左右子树根结点的权值之和

在F中删除这两棵树,同时将新的二叉树加入F中.

重复,直到F只含有一棵树为止.(得到哈夫曼树)

在F中删除这两棵树,同时将新的二叉树加入F中.

构造完毕(哈夫曼树,最有二叉树),也就是最佳判定树

哈夫曼编码

哈夫曼树的应用很广,哈夫曼编码就是其在电讯通信中的应用之一。广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。在电讯通信业务中,通常用二进制编码来表示字母或其他字符,并用这样的编码来表示字符序列。

例:如果需传送的电文为 ‘ABACCDA’,它只用到四种字符,用两位二进制编码便可分辨。假设 A, B, C, D 的编码分别为 00, 01,10, 11,则上述电文便为 ‘00010010101100’(共 14 位),译码员按两位进行分组译码,便可恢复原来的电文。

能否使编码总长度更短呢?

实际应用中各字符的出现频度不相同,用短(长)编码表示频率大(小)的字符,使得编码序列的总长度最小,使所需总空间量最少

数据的最小冗余编码问题

在上例中,若假设 A, B, C, D 的编码分别为 0,00,1,01,则电文 ‘ABACCDA’ 便为 ‘000011010’(共 9 位),但此编码存在多义性:可译为: ‘BBCCDA’、‘ABACCDA’、‘AAAACCACA’ 等。

译码的惟一性问题

要求任一字符的编码都不能是另一字符编码的前缀,这种编码称为前缀编码(其实是非前缀码)。 在编码过程要考虑两个问题,数据的最小冗余编码问题,译码的惟一性问题,利用最优二叉树可以很好地解决上述两个问题

用二叉树设计二进制前缀编码

以电文中的字符作为叶子结点构造二叉树。然后将二叉树中结点引向其左孩子的分支标 ‘0’,引向其右孩子的分支标 ‘1’; 每个字符的编码即为从根到每个叶子的路径上得到的 0, 1 序列。如此得到的即为二进制前缀编码。

编码: A:0, C:10,B:110,D:111

任意一个叶子结点都不可能在其它叶子结点的路径中。

用哈夫曼树设计总长最短的二进制前缀编码

假设各个字符在电文中出现的次数(或频率)为 wi ,其编码长度为 li,电文中只有 n 种字符,则电文编码总长为:

设计电文总长最短的编码,设计哈夫曼树(以 n 种字符出现的频率作权),

由哈夫曼树得到的二进制前缀编码称为哈夫曼编码

例:如果需传送的电文为 ‘ABACCDA’,即:A, B, C, D

的频率(即权值)分别为 0.43, 0.14, 0.29, 0.14,试构造哈夫曼编码。

编码: A:0, C:10,  B:110, D:111 。电文 ‘ABACCDA’ 便为 ‘0110010101110’(共 13 位)。

例:如果需传送的电文为 ‘ABCACCDAEAE’,即:A, B, C, D, E 的频率(即权值)分别为0.36, 0.1, 0.27, 0.1, 0.18,试构造哈夫曼编码。

编码: A:11,C:10,E:00,B:010,D:011 ,则电文 ‘ABCACCDAEAE’ 便为 ‘110101011101001111001100’(共 24 位,比 33 位短)。

译码

从哈夫曼树根开始,对待译码电文逐位取码。若编码是“0”,则向左走;若编码是“1”,则向右走,一旦到达叶子结点,则译出一个字符;再重新从根出发,直到电文结束。

电文为 “1101000” ,译文只能是“CAT”

哈夫曼编码算法的实现

由于哈夫曼树中没有度为1的结点,则一棵有n个叶子的哈夫曼树共有2×n-1个结点,可以用一个大小为2×n-1 的一维数组存放哈夫曼树的各个结点。 由于每个结点同时还包含其双亲信息和孩子结点的信息,所以构成一个静态三叉链表。

1 //haffman 树的结构

2 typedef struct

3 {4 //叶子结点权值

5 unsigned intweight;6 //指向双亲,和孩子结点的指针

7 unsigned intparent;8 unsigned intlChild;9 unsigned intrChild;10 } Node, *HuffmanTree;11

12 //动态分配数组,存储哈夫曼编码

13 typedef char *HuffmanCode;14

15 //选择两个parent为0,且weight最小的结点s1和s2的方法实现16 //n 为叶子结点的总数,s1和 s2两个指针参数指向要选取出来的两个权值最小的结点

17 void select(HuffmanTree *huffmanTree, int n, int *s1, int *s2)18 {19 //标记 i

20 int i = 0;21 //记录最小权值

22 intmin;23 //遍历全部结点,找出单节点

24 for(i = 1; i <= n; i++)25 {26 //如果此结点的父亲没有,那么把结点号赋值给 min,跳出循环

27 if((*huffmanTree)[i].parent == 0)28 {29 min =i;30 break;31 }32 }33 //继续遍历全部结点,找出权值最小的单节点

34 for(i = 1; i <= n; i++)35 {36 //如果此结点的父亲为空,则进入 if

37 if((*huffmanTree)[i].parent == 0)38 {39 //如果此结点的权值比 min 结点的权值小,那么更新 min 结点,否则就是最开始的 min

40 if((*huffmanTree)[i].weight < (*huffmanTree)[min].weight)41 {42 min =i;43 }44 }45 }46 //找到了最小权值的结点,s1指向

47 *s1 =min;48 //遍历全部结点

49 for(i = 1; i <= n; i++)50 {51 //找出下一个单节点,且没有被 s1指向,那么i 赋值给 min,跳出循环

52 if((*huffmanTree)[i].parent == 0 && i != (*s1))53 {54 min =i;55 break;56 }57 }58 //继续遍历全部结点,找到权值最小的那一个

59 for(i = 1; i <= n; i++)60 {61 if((*huffmanTree)[i].parent == 0 && i != (*s1))62 {63 //如果此结点的权值比 min 结点的权值小,那么更新 min 结点,否则就是最开始的 min

64 if((*huffmanTree)[i].weight < (*huffmanTree)[min].weight)65 {66 min =i;67 }68 }69 }70 //s2指针指向第二个权值最小的叶子结点

71 *s2 =min;72 }73

74 //创建哈夫曼树并求哈夫曼编码的算法如下,w数组存放已知的n个权值

75 void createHuffmanTree(HuffmanTree *huffmanTree, int w[], intn)76 {77 //m 为哈夫曼树总共的结点数,n 为叶子结点数

78 int m = 2 * n - 1;79 //s1 和 s2 为两个当前结点里,要选取的最小权值的结点

80 ints1;81 ints2;82 //标记

83 inti;84 //创建哈夫曼树的结点所需的空间,m+1,代表其中包含一个头结点

85 *huffmanTree = (HuffmanTree)malloc((m + 1) * sizeof(Node));86 //1--n号存放叶子结点,初始化叶子结点,结构数组来初始化每个叶子结点,初始的时候看做一个个单个结点的二叉树

87 for(i = 1; i <= n; i++)88 {89

90 //其中叶子结点的权值是 w【n】数组来保存

91 (*huffmanTree)[i].weight =w[i];92 //初始化叶子结点(单个结点二叉树)的孩子和双亲,单个结点,也就是没有孩子和双亲,==0

93 (*huffmanTree)[i].lChild = 0;94 (*huffmanTree)[i].parent = 0;95 (*huffmanTree)[i].rChild = 0;96 }//end of for97 //非叶子结点的初始化

98 for(i = n + 1; i <= m; i++)99 {100 (*huffmanTree)[i].weight = 0;101 (*huffmanTree)[i].lChild = 0;102 (*huffmanTree)[i].parent = 0;103 (*huffmanTree)[i].rChild = 0;104 }105

106 printf("\n HuffmanTree: \n");107 //创建非叶子结点,建哈夫曼树

108 for(i = n + 1; i <= m; i++)109 {110 //在(*huffmanTree)[1]~(*huffmanTree)[i-1]的范围内选择两个parent为0111 //且weight最小的结点,其序号分别赋值给s1、s2

112 select(huffmanTree, i-1, &s1, &s2);113 //选出的两个权值最小的叶子结点,组成一个新的二叉树,根为 i 结点

114 (*huffmanTree)[s1].parent =i;115 (*huffmanTree)[s2].parent =i;116 (*huffmanTree)[i].lChild =s1;117 (*huffmanTree)[i].rChild =s2;118 //新的结点 i 的权值

119 (*huffmanTree)[i].weight = (*huffmanTree)[s1].weight + (*huffmanTree)[s2].weight;120

121 printf("%d (%d, %d)\n", (*huffmanTree)[i].weight, (*huffmanTree)[s1].weight, (*huffmanTree)[s2].weight);122 }123

124 printf("\n");125 }126

127 //哈夫曼树建立完毕,从 n 个叶子结点到根,逆向求每个叶子结点对应的哈夫曼编码

128 void creatHuffmanCode(HuffmanTree *huffmanTree, HuffmanCode *huffmanCode, intn)129 {130 //指示biaoji

131 inti;132 //编码的起始指针

133 intstart;134 //指向当前结点的父节点

135 intp;136 //遍历 n 个叶子结点的指示标记 c

137 unsigned intc;138 //分配n个编码的头指针

139 huffmanCode=(HuffmanCode *)malloc((n+1) * sizeof(char *));140 //分配求当前编码的工作空间

141 char *cd = (char *)malloc(n * sizeof(char));142 //从右向左逐位存放编码,首先存放编码结束符

143 cd[n-1] = '\0';144 //求n个叶子结点对应的哈夫曼编码

145 for(i = 1; i <= n; i++)146 {147 //初始化编码起始指针

148 start = n - 1;149 //从叶子到根结点求编码

150 for(c = i, p = (*huffmanTree)[i].parent; p != 0; c = p, p = (*huffmanTree)[p].parent)151 {152 if( (*huffmanTree)[p].lChild ==c)153 {154 //从右到左的顺序编码入数组内

155 cd[--start] = '0'; //左分支标0

156 }157 else

158 {159 cd[--start] = '1'; //右分支标1

160 }161 }//end of for162 //为第i个编码分配空间

163 huffmanCode[i] = (char *)malloc((n - start) * sizeof(char));164

165 strcpy(huffmanCode[i], &cd[start]);166 }167

168 free(cd);169 //打印编码序列

170 for(i = 1; i <= n; i++)171 {172 printf("HuffmanCode of %3d is %s\n", (*huffmanTree)[i].weight, huffmanCode[i]);173 }174

175 printf("\n");176 }177

178 int main(void)179 {180 HuffmanTree HT;181 HuffmanCode HC;182 int *w,i,n,wei,m;183

184 printf("\nn =");185

186 scanf("%d",&n);187

188 w=(int *)malloc((n+1)*sizeof(int));189

190 printf("\ninput the %d element's weight:\n",n);191

192 for(i=1; i<=n; i++)193 {194 printf("%d:",i);195 fflush(stdin);196 scanf("%d",&wei);197 w[i]=wei;198 }199

200 createHuffmanTree(&HT, w, n);201 creatHuffmanCode(&HT,&HC,n);202

203 return 0;204 }

补充:树的计数

已知先序序列和中序序列可确定一棵唯一的二叉树;

已知后序序列和中序序列可确定一棵唯一的二叉树;

已知先序序列和后序序列不能确定一棵唯一的二叉树。

欢迎关注

dashuai的博客是终身学习践行者,大厂程序员,且专注于工作经验、学习笔记的分享和日常吐槽,包括但不限于互联网行业,附带分享一些PDF电子书,资料,帮忙内推,欢迎拍砖!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LabVIEW是一种用于进行数据采集、控制系统设计和嵌入式开发的可视化编程工具。信源哈夫曼编码是一种压缩算法,可以将频率高的字符用较短的编码表示,从而减小数据的存储空间和传输带宽。 在LabVIEW实现信源哈夫曼编码的过程可以分为以下几个步骤: 1. 构建字符频率统计:首先,需要对源数据进行字符频率的统计。通过将源数据输入到LabVIEW进行处理,可以使用循环结构遍历每个字符并统计其频率。 2. 构建哈夫曼:根据字符频率统计结果,使用LabVIEW结构来构建哈夫曼。可以使用递归的方式构建哈夫曼,不断合并频率最小的字符直到只剩下一个根节点。 3. 生成哈夫曼编码:当哈夫曼构建完成后,可以通过遍历哈夫曼的路径来生成每个字符的哈夫曼编码。在LabVIEW,可以使用递归遍历结构的方式来生成编码。 4. 压缩数据:将源数据根据生成的哈夫曼编码进行压缩。将源数据的每个字符替换为其对应的哈夫曼编码,将所有编码连接在一起形成压缩后的数据。 5. 解压数据:接收到压缩数据后,通过反向遍历哈夫曼的路径,可以将编码恢复为原始的字符序列。将压缩数据输入LabVIEW程序,通过根据给定的哈夫曼构建的映射关系,可以还原压缩前的数据。 通过以上步骤,可以在LabVIEW实现信源哈夫曼编码实现数据的高效压缩和解压缩。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值