python定义求素数和函数_第6章函数-2 使用函数求素数和

使用函数求素数和

prime(p),

其中函数prime当用户传入参数p为素数时返回true,否则返回false. primesum(m,n),函数primesum返回区间[m,

n]内所有素数的和。题目保证用户传入的参数1<=m

函数接口定义:

在这里描述函数接口:

prime(p),返回true表示p是素数,返回false表示p不是素数

primesum(m,n),函数返回素数和

裁判测试程序样例:

/* 请在这里填写答案 */

m,n=input().split()

m=int(m)

n=int(n)

print(primesum(m,n))

代码如下:

#!/usr/bin/python

# -*- coding: utf-8 -*-

def prime(p):

key = true

if p == 1 :

key = false

for i in range(2,p):

if p%i == 0:

key =false

return key

def primesum(m,n):

sum =0

for i in range(m,n+1):

if prime(i) :

sum += i

return sum

这个程序也属于简单程序,不多说。判断素数,然后遍历判断求和。

读书和健身总有一个在路上

希望与广大网友互动??

点此进行留言吧!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 可以使用筛法求解。具体步骤如下: 1. 创建一个长度为n+1的布尔型数组prime,用来标记每个数是否为素数。初始时,将所有元素都标记为true。 2. 从2开始,依次枚举每个数i,如果prime[i]为true,则将i的所有倍数(除了i本身)标记为false,因为它们不是素数。 3. 最后遍历[m,n]区间,输出所有prime[i]为true的i,即为[m,n]区间的所有素数。 代码实现如下: ```python m, n = map(int, input().split()) # 初始化prime数组 prime = [True] * (n+1) prime[] = prime[1] = False # 筛法求素数 for i in range(2, int(n**.5)+1): if prime[i]: for j in range(i*i, n+1, i): prime[j] = False # 输出[m,n]区间的素数 for i in range(m, n+1): if prime[i]: print(i, end=' ') ``` 例如,输入m=10,n=30,输出结果为: ``` 11 13 17 19 23 29 ``` ### 回答2: 素数指的是只能被1和它本身整除的自然数,计算[m,n]区间的素数需要依次判断每个自然数是否为素数。具体步骤如下: 1. 判断m和n的大小关系,如果m>n,则交换两个数的值,确保m<=n。 2. 从m开始逐个判断每个自然数是否为素数。对于每个自然数i,需要判断i能否被2~sqrt(i)之间的整数整除。如果能够被整除,说明i不是素数,进入下一个数的判断。如果不能被整除,则说明i是素数,将其输出或存储。 3. 继续判断下一个数,直到判断完n为止。 下面使用Python语言编写实现以上算法的函数: ``` import math # 判断一个数是否为素数 def is_prime(n): if n <= 1: return False for i in range(2, int(math.sqrt(n))+1): if n % i == 0: return False return True # 计算[m, n]区间的素数 def prime_range(m, n): if m > n: m, n = n, m for i in range(m, n+1): if is_prime(i): print(i) # 示例 prime_range(10, 30) # 输出结果为:11 13 17 19 23 29 ``` 在实现过程中,需要注意一些细节问题。首先,为了减少判断次数,可以将i从2~sqrt(n)的范围缩小到2~sqrt(i)的范围。其次,程序需要先判断m和n的大小关系,以确保m<=n。最后,需要特别处理m和n为1的情况,因为1既不是质数也不是合数。 ### 回答3: 素数是指大于1的正整数,除了1和本身外,不能被其他正整数整除的数。例如2、3、5、7、11、13等都是素数。现在需要我们在[m,n]区间内找出所有的素数。 首先需要了解素数的判定方法。一般来说,判断一个数是否为素数,可以遍历从2到这个数的平方根,看是否有能整除这个数的因子。如果没有,则该数为素数。 在程序中,我们可以通过循环遍历[m,n]区间内的所有数,使用上述方法判断是否为素数。具体实现如下: 1. 首先定义两个变量m和n,分别代表区间的左右端点。 2. 对于[m,n]区间内的每个数i,用一个循环i从2到i的平方根,判断i是否被能被除了1和本身以外的其他数整除。如果有,则不是素数,跳出循环;如果没有,则是素数,输出i。 3. 如果n比m小,需要交换n和m的值。 实现代码如下: ```python m = int(input("请输入区间左端点m:")) n = int(input("请输入区间右端点n:")) if n < m: # 如果n比m小,交换n和m的值 m, n = n, m for i in range(m, n+1): # 遍历[m, n]区间内的所有数 if i <= 1: # 1以下的数不是素数 continue flag = True # flag用来记录i是否是素数 for j in range(2, int(i**0.5)+1): # 遍历2到i的平方根 if i % j == 0: # 如果能被整除,不是素数 flag = False break if flag: # 如果i是素数,输出i print(i, end=' ') ``` 输入m=10,n=30时,输出结果为11 13 17 19 23 29。 在实际编写中,也可以使用更加高效的素数筛法,例如埃氏筛法或欧拉筛法。但是这些算法都比较复杂,需要比较深厚的数学基础和算法知识。对于初学者来说,以上的方法已经足够应对大多数情况。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值