下列选项中,属于原始凭证分割单包括的基本内容的有()。
已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为()A.B.C.D.
长方体的长、宽、高分别为3、2、1,则从A到沿长方体的表面的最短距离为()A. B. C. D.
如图,已知三棱柱的侧棱与底面垂直,⊥AC,M是的中点,N是BC的中点,点P在直线上,且满足.(1)当取何值时,直线PN与
如图,在三棱柱中,侧棱底面,,为的中点,(1)求证:平面;(2)过点作于点,求证:直线平面(3)若四棱锥的体积为3,求的
在四棱锥的四个侧面中,直角三角形最多可有 ()A.4个B.2个C.3个D.1个
一个棱柱为正四棱柱的条件是()A.底面是正方形,有两个侧面垂直于底面B.底面是正方形,有两个侧面是矩形C.底
设a,b表示两条不同的直线,表示平面,则以下命题正确的有()①; ②; ③; ④.A.①②B.①②③C.②③④D.①②④
如图,在三棱柱中,侧棱底面,,为的中点,(1)求证:平面;(2)过点作于点,求证:直线平面(3)若四棱锥的体积为3,求的
如图,直三棱柱中,,是棱的中点,(1)证明:(2)求二面角的大小.
一个圆锥的侧面展开图是半径为,圆心角为的扇形,则圆锥的底面圆半径是
棱长为1的正方体被以A为球心,AB为半径的球相截,则所截得几何体(球内部分)的表面积为()A.B.C.D.
长方体的长、宽、高分别为3、2、1,则从A到沿长方体的表面的最短距离为()A. B. C. D.
咨询转介的正确做法是()。A.由咨询师个人根据需要决定B.对新咨询师详细介绍情况
设a,b表示两条不同的直线,表示平面,则以下命题正确的有()①; ②; ③; ④.A.①②B.①②③C.②③④D.①②④
如图,直三棱柱,,AA′=1,点M,N分别为和的中点。 (Ⅰ)证明:∥平面; (Ⅱ)求三棱锥的体积。(锥体体积公式V=Sh,其中S为
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。如图,已知四棱锥P—ABCD,底面ABCD为矩形,,PA
如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.(1)求证:;(2)若四边形A
甲、乙双方签订一份建造大型设备的合同,由甲提供主体配件和原材料,乙方提供建设服务,由此形成的法
在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O。(1)证明在侧棱AA1上存在一
圆柱形容器内部盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面
一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱
如图,在四边形中,,,,,,,求四边形绕旋转一周所成几何体的表面积及体积
已知三棱锥O-ABC中,OA、OB、OC两两互相垂直,OC=1,OA=x, OB=y,若x+y=4,则已知三棱锥O-ABC体积的最大值是.
如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。(I) 证明:平面⊥平面(Ⅱ)平面分此棱柱为两部
三棱锥中,两两垂直且相等,点,分别是和上的动点,且满足,,则和所成角余弦值的取值范围是.
下列选项中,属于原始凭证分割单包括的基本内容的有()。
在四棱锥的四个侧面中,直角三角形最多可有 ()A.4个B.2个C.3个D.1个
三棱锥中,两两垂直且相等,点,分别是和上的动点,且满足,,则和所成角余弦值的取值范围是.
下列选项中,属于原始凭证分割单包括的基本内容的有()。