运算流图 基2时域抽取4点_文本摘要综述(一)——抽取式摘要

933521942c33b46bbaf4fa07beebb8e4.png

文本摘要的目标是将长文本进行压缩、归纳和总结,从而形成具有概括性含义的短文本。根据文档个数的不同,文本摘要任务可以分为单文档摘要和多文档摘要。根据摘要方法的不同,文本摘要任务又可以分为抽取式方法和生成式方法。由于抽取式方法发展较早,且目前技术较为成熟,因此在业界被广泛的应用。本文首先介绍抽取式方法的发展历史及其最新研究进展,下一篇将介绍生成式方法的历史及进展情况。

抽取式方法(如图1)是一种直接从原文中选择若干条重要的句子,并对它们进行排序和重组而形成摘要的方法。通常而言,抽取式方法可以分为两大类:无监督抽取式方法和有监督抽取式方法。

7b066684dd4998d238e6061a8023a51a.png
(图1)抽取式摘要

1. 常用数据集:

DUC-2001~2007 (http://www-nlpir.nist.gov/projects/duc/data.html)

TAC-2008~2015 (http://tac.nist.gov/data/)

Gigawords (https://catalog.ldc.upenn.edu/LDC2012T21)

LCSTS (http://icrc.hitsz.edu.cn/Article/show/139.html)

CNN/DailyMail (https://cs.nyu.edu/~kcho/DMQA/)

2. 评价指标:

ROUGE-1, Rouge-2, ROUGE-SU4, ROUGE-L

3. 无监督抽取式方法:

无监督抽取式方法不需要平行语料对来进行训练,略去了人工标记语料的繁琐,因此在很多场景下都得到了广泛的应用。早期的无监督抽取式方法有Lead, Centroid, TextRank, ClusterCMRW, ILP以及Submodular。这些方法大多是基于统计层面的,即最大化摘要句子对原始文档的表征能力。在这些方法中,最为著名的是TextRank。

>>TextRank[1]

TextRank的思想借鉴于网页排序算法——PageRank,是一种用于文本的基于图的排序算法。通过把文本分割成若干组成单元(句子),构建节点连接图,用句子之间的相似度作为边的权重,通过循环迭代计算句子的TextRank值,最后抽取排名高的句子组合成文本摘要。具体迭代公式为:

761941ac9ea11800ceef4f365f9457b6.png

在自动摘要时,TextRank将文本中的每个句子分别看作一个节点,如果两个句子有相似性,那么认为这两个句子对应的节点之间存在一条无向有权边,句子相似度的计算公式为:

6a88f918340b2be8aa28d71cee292957.png

上述这些早期的无监督方法大多产生于2010年之前,之后,由于机器学习和神经网络的发展,无监督方法也发生了一些本质上的变革。在2015年的AAAI和IJCAI会议上,相继有两位研究人员提出使用Sparse Coding无监督方法来进行文本摘要。

>>Two-Level Sparse Representation[2]

在AAAI 2015的工作(如图2)中,作者将Sparse Coding的思想融入到文本摘要任务中来,将摘要句子看作原文的稀疏编码表示,通过最大化摘要对原文句子的表征能力来学习映射参数。

e68258be4be0ac137546b9c1dc682066.png
(图2)Two-Level Sparse representation

在学习相关参数时,作者主要考虑了三点,Coverage(覆盖度)、稀疏度(Sparsity)以及Diversity(多样性)。

覆盖度是指摘要句子能够尽可能覆盖原文中的主要思想,公式化定义为:

e02df5ecdd2d017e2a8abcc7f5b47768.png

稀疏度是指摘要中句子数要比较少,公式化定义为:

e67a00a2892cba5d993c6460c3ab4705.png

多样性是指摘要中每条句子所表达的意思尽可能的不同,从而避免语义上的重复,公式化定义为:

fa1335c721bd8f0de6e945a7d5d97665.png

>>RA-MDS[3]

与上述方法不同的是,本篇论文在使用Sparsed Coding时,融入了更为精细的语法单元,即名词和动词短语来对原文进行压缩;除此之外,为了提高最终生成的摘要的质量,作者还对相关的命名实体进行了改写。作者将本方法(Ours)与AAAI 2015 (MDS-Sparse)中的Spared Coding方法进行了对比(如图3):

487c88103cc651700105a8d4ec16eee8.png
(图3) 对比结果

>>DAE[4]

这篇论文在处理无监督抽取式摘要问题时分为三个步骤(如图4):

70a33c179094c611b0bb1e5c7f3c3931.png
(图4)DAE流程图

第一步是对现有的句子进行扩增,采用的方法是从语料集中随机采样一部分的短语或单词进行打乱,然后加入到现有的句子中,组成较长的句子;第二步是按照Encoder-Decoder摘要框架对长句子进行压缩;第三步是构建损失函数使得第一步中的句子与第二步压缩后的句子尽量相同。

>>PACSUM (ACL 2019)

这篇论文的整体框架是基于TextRank,Centroid等传统的基于图的摘要方法,但是有两方面的创新:

其一是在句子表示中引入了BERT模型来捕获句子的深层语义信息,其二是图网络中使用位置信息来判断句子之间的指向关系,从而将传统的无向图转换成有向图,提高模型准确率。最后,作者对各个模型的效果进行了对比(如图5):

bbf92adccf64b354f6010e6ca7b7b293.png
(图5)对比实验

4. 有监督抽取式方法:

随着机器学习和深度学习技术的发展,抽取式摘要的研究逐渐偏向于有监督方向。在有监督方法中,文本摘要被看作二分类问题,通过神经网络来学习句子及其标签之间的对应关系。常见的方法包括R2N2,NeuralSum,SummaRuNNer以及REFRESH。

>>R2N2[6]

作者使用人工定义的14个特征(包含词级、短语级和句子级)来表示句子,同时使用递归神经网络来建模句子向量与其标签之间的映射关系。递归神经网络可以模拟句子内部各元素之间的语义依存关系,更好地学习语义特征。模型框架如图6:

8a2e0ce56118d56a059099ac33310666.png
(图6)R2N2结构图

>>NeuralSum[7]

相比R2N2,NeuralSum方法使用卷积神经网络和循环神经网络来提取句子特征,从而改善了传统人工特征的不准确性。

>>SummaRuNNer[8]

相比NeuralSum,SummaRuNNer创新点包括两方面:其一是使用分层神经网络提取句子的特征,捕获了单词,句子和文档之间的分层关系。其二是在句子建模过程中引入了位置信息向量,最终每个句子的向量由一下六部分组成:

e5f8956655f4bd25e5a9ebd8a6dbc54d.png
(图7)SummaRuNNer公式

>>BertSum[9]

第一篇将Bert应用到抽取式摘要中,并在Bert Baseline模型的基础上,在每句话前面都添加了[cls],以此来得到每句话的特征。最后经过了Summarization层得到摘要。作者在Summarization层采用了三种方法:(1)通过矩阵运算直接得到分类器(2)在分类器前加入Transformer(3)在分类器前加入RNN。各个方法的实验结果如图8:

31cfccd5289eea4ff81ee65d42ceb40e.png
(图8)BertSum实验对比

>>STRASS

c9025acc59a019655ba77683e22cfb6a.png
(图9)STRASS结构图

这篇论文(如图9)使用了Transformation层来选择与原文向量最相近的句子向量来组成摘要,通过最小化Extractive Summarization与Groud Truth向量的相似度来学习转义网络参数,由于Transformation只有一层,因此可以在CPU上快速的训练,提高效率。

5. 参考文献:

[1]. Mihalcea R, Tarau P. Textrank: Bringing order into text[C]//Proceedings of the 2004 conference on empirical methods in natural language processing. 2004: 404-411.

[2]. Liu H, Yu H, Deng Z H. Multi-document summarization based on two-level sparse representation model[C]//Twenty-ninth AAAI conference on artificial intelligence. 2015.

[3] Li P, Bing L, Lam W, et al. Reader-aware multi-document summarization via sparse coding[C]//Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015.

[4] Fevry T, Phang J. Unsupervised Sentence Compression using Denoising Auto-Encoders[J]. arXiv preprint arXiv:1809.02669, 2018.

[5] Zheng H, Lapata M. Sentence Centrality Revisited for Unsupervised Summarization[J]. arXiv preprint arXiv:1906.03508, 2019.

[6] Cao Z, Wei F, Dong L, et al. Ranking with recursive neural networks and its application to multi-document summarization[C]//Twenty-ninth AAAI conference on artificial intelligence. 2015.

[7] Cheng J, Lapata M. Neural summarization by extracting sentences and words[J]. arXiv preprint arXiv:1603.07252, 2016.

[8] Nallapati R, Zhai F, Zhou B. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents[C]//Thirty-First AAAI Conference on Artificial Intelligence. 2017.

[9] Liu Y. Fine-tune BERT for Extractive Summarization[J]. arXiv preprint arXiv:1903.10318, 2019.

[10] Bouscarrat L, Bonnefoy A, Peel T, et al. STRASS: A Light and Effective Method for Extractive Summarization Based on Sentence Embeddings[J]. arXiv preprint arXiv:1907.07323, 2019.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值