线性判别分析_线性判别分析(LDA)和逻辑斯蒂回归(LogitsR)的关系

考虑多分类问题,特征为

,类别为
个取值。
表示样本
属于第
类的概率。

0 贝叶斯后验概率

根据贝叶斯定理,样本

属于第
类的后验概率为:

其中

是第
类的先验概率。假设第
类的样本
服从高斯分布,其密度函数为:

那么log-ratio(对数几率)为:

其中

当log-ratio大于0时,说明

属于类别
的概率大于类别
,反之亦然。

1 LDA

当各类的协方差矩阵相同时:

从而,

于是,log-ratio表达成了

的线性函数,因此也叫线性判别分析。
当各类的协方差矩阵不一样时,
无法消除,log-ratio是
的二次函数,此时又叫做二次判别分析(QDA)。

2 LogitsR

线性判别分析的形式和逻辑斯蒂回归很相似。下面我们再看看逻辑斯蒂回归。多类别逻辑斯蒂回归的一般形式为:

其log-ratio形式为:

3 比较

从形式上看LDA和LogitsR的log-ratio具有相同的形式,但它们其实并不是一样的模型。

至少有以下三点不同:

  1. 假设不同。LDA需要假设
    服从正态分布,LogitsR无此假设。
  2. 参数估计方式不同。LDA根据样本计算均值和协方差矩阵,然后带入判别式。LogitsR使用极大对数似然估计参数。
  3. 模型意义不同。LDA属于生成模型,用到样本的先验信息,极大化后验概率,maximizing full log-likelihood。LogitsR属于判别模型,只考虑给定
    时的条件概率,maximizing conditional log-likelihood。LogitsR概率等价于每个类别具有相同先验概率时的贝叶斯后验概率。

优缺点比较:

1、LDA不稳健,容易受异常值影响,可以采取一些稳健的均值和协方差估计方法。Sigmoid函数将任意

对应的类别概率压缩到[0,1]内,再使用相对熵损失函数,因此
LogitsR是稳健的。

2、LDA适用于半监督学习。回忆一下没有label的混合高斯分布,可以用EM算法估计出每一类的均值和方差。现在的情况是,有一堆样本,其中部分样本有label,部分样本没有label。我们仍可以用EM算法估计每一类的均值和方差,只不过有label的那部分样本所属类别确定。这其实就是半监督的LDA学习。LogitsR不适用于半监督学习。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值