adamax参数_fluid.optimizer - AdamaxOptimizer - 《PaddlePaddle(飞桨) v1.6 深度学习平台使用文档》 - 书栈网 · BookStack...

本文介绍了PaddlePaddle(飞桨)v1.6中的AdamaxOptimizer,它是Adam算法的一种变体,关注无穷大范数,有助于参数更新的稳定性和简单性。内容包括Adamax优化器的参数解释、更新公式以及代码示例。
摘要由CSDN通过智能技术生成

AdamaxOptimizerclass paddle.fluid.optimizer.AdamaxOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, regularization=None, name=None)[源代码]

Adamax优化器是参考 Adam论文 第7节Adamax优化相关内容所实现的。Adamax算法是基于无穷大范数的 Adam 算法的一个变种,使学习率更新的算法更加稳定和简单。

其参数更新的计算公式如下:

论文中没有 epsilon 参数。但是,为了保持数值稳定性, 避免除0错误, 此处增加了这个参数。

参数:

learning_rate (float|Variable,可选) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个值为浮点型的Variable,默认值为0.001

beta1 (float, 可选) - 一阶矩估计的指数衰减率,默认值为0.9

beta2 (float, 可选) - 二阶矩估计的指数衰减率,默认值为0.999

epsilon (float, 可选) - 保持数值稳定性的短浮点类型值,默认值为1e-08

regularization (WeightDecayRegularizer, 可选) - 正则化函数,用于减少泛化误差。例如可以是 L2DecayRegularizer ,默认值为None

name (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 Name ,默认值为None

注解

目前 AdamaxOptimizer 不支持 Sparse Parameter Optimization(稀疏参数优化)。

代码示例:

importpaddle.fluidasfluid

importnumpy

# First create the Executor.

place=fluid.CPUPlace()# fluid.CUDAPlace(0)

exe=fluid.Executor(place)

train_program=fluid.Program()

startup_program=fluid.Program()

withfluid.program_guard(train_program,startup_program):

data=fluid.layers.data(name='X',shape=[1],dtype='float32')

hidden=fluid.layers.fc(input=data,size=10)

loss=fluid.layers.mean(hidden)

adam=fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)

adam.minimize(loss)

# Run the startup program once and only once.

exe.run(startup_program)

x=numpy.random.random(size=(10,1)).astype('float32')

outs=exe.run(program=train_program,

feed={'X':x},

fetch_list=[loss.name])

minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)

为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。

参数:

loss (Variable) – 需要最小化的损失值变量

startup_program (Program, 可选) – 用于初始化parameter_list中参数的 Program , 默认值为None,此时将使用 default_startup_program

parameter_list (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter

no_grad_set (set, 可选) – 不需要更新的Parameter的集合,默认值为None

grad_clip (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None

返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值

代码示例:

importnumpy

importpaddle.fluidasfluid

data=fluid.layers.data(name='X',shape=[1],dtype='float32')

hidden=fluid.layers.fc(input=data,size=10)

loss=fluid.layers.mean(hidden)

adam=fluid.optimizer.Adamax(learning_rate=0.2)

adam.minimize(loss)

place=fluid.CPUPlace()# fluid.CUDAPlace(0)

exe=fluid.Executor(place)

x=numpy.random.random(size=(10,1)).astype('float32')

exe.run(fluid.default_startup_program())

outs=exe.run(program=fluid.default_main_program(),

feed={'X':x},

fetch_list=[loss.name])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值