AdamaxOptimizerclass paddle.fluid.optimizer.AdamaxOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, regularization=None, name=None)[源代码]
Adamax优化器是参考 Adam论文 第7节Adamax优化相关内容所实现的。Adamax算法是基于无穷大范数的 Adam 算法的一个变种,使学习率更新的算法更加稳定和简单。
其参数更新的计算公式如下:
论文中没有 epsilon 参数。但是,为了保持数值稳定性, 避免除0错误, 此处增加了这个参数。
参数:
learning_rate (float|Variable,可选) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个值为浮点型的Variable,默认值为0.001
beta1 (float, 可选) - 一阶矩估计的指数衰减率,默认值为0.9
beta2 (float, 可选) - 二阶矩估计的指数衰减率,默认值为0.999
epsilon (float, 可选) - 保持数值稳定性的短浮点类型值,默认值为1e-08
regularization (WeightDecayRegularizer, 可选) - 正则化函数,用于减少泛化误差。例如可以是 L2DecayRegularizer ,默认值为None
name (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 Name ,默认值为None
注解
目前 AdamaxOptimizer 不支持 Sparse Parameter Optimization(稀疏参数优化)。
代码示例:
importpaddle.fluidasfluid
importnumpy
# First create the Executor.
place=fluid.CPUPlace()# fluid.CUDAPlace(0)
exe=fluid.Executor(place)
train_program=fluid.Program()
startup_program=fluid.Program()
withfluid.program_guard(train_program,startup_program):
data=fluid.layers.data(name='X',shape=[1],dtype='float32')
hidden=fluid.layers.fc(input=data,size=10)
loss=fluid.layers.mean(hidden)
adam=fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
adam.minimize(loss)
# Run the startup program once and only once.
exe.run(startup_program)
x=numpy.random.random(size=(10,1)).astype('float32')
outs=exe.run(program=train_program,
feed={'X':x},
fetch_list=[loss.name])
minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数:
loss (Variable) – 需要最小化的损失值变量
startup_program (Program, 可选) – 用于初始化parameter_list中参数的 Program , 默认值为None,此时将使用 default_startup_program
parameter_list (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
no_grad_set (set, 可选) – 不需要更新的Parameter的集合,默认值为None
grad_clip (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
代码示例:
importnumpy
importpaddle.fluidasfluid
data=fluid.layers.data(name='X',shape=[1],dtype='float32')
hidden=fluid.layers.fc(input=data,size=10)
loss=fluid.layers.mean(hidden)
adam=fluid.optimizer.Adamax(learning_rate=0.2)
adam.minimize(loss)
place=fluid.CPUPlace()# fluid.CUDAPlace(0)
exe=fluid.Executor(place)
x=numpy.random.random(size=(10,1)).astype('float32')
exe.run(fluid.default_startup_program())
outs=exe.run(program=fluid.default_main_program(),
feed={'X':x},
fetch_list=[loss.name])