python中自然数怎么表示_Python 表示无穷大的数

博客介绍了使用Python从100个随机数中寻找两个最接近的自然数的方法,涉及浮点数的无穷大表示以及NaN(非数字)的概念。文章通过代码示例展示了如何处理浮点数的无穷大,并提到了C语言中判断NAN的函数。
摘要由CSDN通过智能技术生成

我之前只知道设置初始值0.今天偶然在Python算法书上看到这个片段,从100个随机数里面找2个最靠近的自然数(不相等):

from random importrandrange

seq= [randrange(10**10) for i in range(100)]

dd= float("inf")for x inseq:for y inseq:if x == y: continued= abs(x-y)if d

xx, yy, dd=x, y, d

print (xx,yy)

我猜测dd表示正无穷.查阅文档,果然如此:

float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and positive or negative infinity.

负无穷有两种表达方式:

>>> float('-Inf')==-float('Inf')

True

顺便还收获了NaN的概念,暂时不知道有什么用.

---------------------------------------------------------------

infinite(无穷大)数

显然,这是与finite数相对的。在无穷大数里值是固定的,分为+∞(正无穷大)和∞(负无穷大)。exponent和significand的值如下所示。

类型

exponent

significand

单精度

FF

0

2128

双精度

7FF

0

21024

扩展双精度

7FFF

0x80000000_00000000

216384

对于扩展双精度来说,由于它的J位是显式的,必须为1值(否则是unsupported类型),因此significand的值为0x80000000_00000000。

NaN(not a number)数

如果一个数超出infinite,那就是一个NaN(not a number)数。在NaN数中,它的exponent部分为可表达的最大值,即FF(单精度)、7FF(双精度)和7FFF(扩展双精度)。

NaN数与infinite数的区别是:infinite数的significand部分为0值(扩展双精度的bit63位为1)。而NaN数的significand部分不为0值。

NaN数包括下列两类。

① SNaN(Signaling NaN)数:SNaN数表示是一种比较严重的错误值。

② QNaN(Quiet NaN)数:在一般情况下,QNaN数是可接受的。

SNaN和QNaN数的编码区别在于significand部分的不同,如下所示。

NaN类型

significand

备注

SNaN

1.0XXX…XXX

XXX不为0

QNaN

1.1…

1.1 后面任意值

SNaN数的significand以1.0开头(并且1.0后面的位不为0值),而QNaN数的significand是1.1开头。

x87 FPU或SSE指令遇到SNaN数时会产生#IA异常,而遇到QNaN时不产生#IA异常(部分指令除外)。

那么既然NAN不是一个真实的数值,在程序如何判断变量是否变成了NAN呢?大部分语言中针对NAN值都有一系列的函数定义,C语言中最常见的函数如下:

_isnan(double x); //判断是否为NAN

_finite(double x); //判读是否为无穷大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值