python二维数组筛选_python numpy过滤二维数组的条件

这篇博客讨论了如何在Python中使用numpy高效地筛选二维数组。作者提供了示例代码,展示了如何通过numpy.in1d函数来实现这一操作,并解释了这种方法的效率优势。
摘要由CSDN通过智能技术生成

Python新手在这里,我已经阅读了Filter rows of a numpy array?和doc但仍然无法弄清楚如何以python方式编写代码.

我有的示例数组:(实际数据是50000 x 10)

a = numpy.asarray([[2,'a'],[3,'b'],[4,'c'],[5,'d']])

filter = ['a','c']

我需要在过滤器中找到a中带有[:,1]的所有行.预期结果:

[[2,'a'],[4,'c']]

我目前的代码是这样的:

numpy.asarray([x for x in a if x[1] in filter ])

它工作正常,但我在某处读到它效率不高.什么是适当的numpy方法?

编辑:

谢谢你所有正确的答案!不幸的是,我只能将一个标记为已接受的答案我很惊讶numpy.in1d没有出现在谷歌搜索numpy过滤器2d数组.

解决方法:

您可以使用可以使用np.in1d生成的bool索引数组.

您可以沿着您想要使用的任何axis索引np.ndarray,例如指示是否应包含元素的bool数组.由于你想沿轴= 0索引,这意味着你想从outest索引中选择,你需要有1D np.array,其长度是行数.其每个元素都将指示是否应包含该行.

一个快速的方法是在a的第二列使用np.in1d.您可以通过[:,1]获得该列的所有元素.现在你有一个np.array,其元素应该根据你的过滤器进行检查.这就是np.in1d的用途.

所以完整的代码看起来像:

import numpy as np

a = np.a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值