一、T检验的思路
举个例子:假设X公司有两块土地:土地A采用A方案进行种植,平均每株可以结100g的农作物。土地B采用改进的B方案种植,公司想知道“B方案是否比A方案好,能提高农作物产量”。为了减少测试成本,假设只从B方案的土地中采样了5株农作物,样本均值为120g。从结果上看,似乎产量提高了,样本均值增加了20%,但是我们可以这样认为吗?
二、 分析:
现在提出假设检验:
- 假设:B方案没有提高产量,即AB方案是同一个分布
- 检验:在此假设下,
发生的概率高不高
已知的数据是,A方案下的农作物的产量服从
,标准差
未知的正态分布:
而B方案下的农作物的产量的样本均值
,样本数为5。下图为不同的均值、标准差对应的正态分布的图像:
标准差越大,说明数据越分散,那么曲线的跨度就越大,曲线显得更加‘矮胖’;反之标准差越小,说明数据越集中,跨度越小,曲线显得更加‘高瘦’。
X如果服从正态分布
这里
,
。
采样5个点使其
图像如下:
由此可见,那5个样本属于
的分布概率非常低。即A、B方案是同一个分布的可能性不大,我们有很大把握可以认为B方案比A方案好,能提高农作物产。 <