t分布表精确完整图_T检验、T分布、T检验的计算方法

本文详细介绍了T检验的思路、分析方法、T分布的特性和用途,通过具体案例阐述了单样本t检验和两样本均数比较的t检验。T检验用于比较样本均数与总体均数的差异,T分布则是在小样本情况下评估这种差异的统计工具,其特点包括对称分布、自由度影响分布形态等。案例分析展示了如何计算t值并依据t分布表进行假设检验,以判断实验效果或处理变化的显著性。
摘要由CSDN通过智能技术生成

一、T检验的思路

举个例子:假设X公司有两块土地:土地A采用A方案进行种植,平均每株可以结100g的农作物。土地B采用改进的B方案种植,公司想知道“B方案是否比A方案好,能提高农作物产量”。为了减少测试成本,假设只从B方案的土地中采样了5株农作物,样本均值为120g。从结果上看,似乎产量提高了,样本均值增加了20%,但是我们可以这样认为吗?

二、 分析:

现在提出假设检验:

  • 假设:B方案没有提高产量,即AB方案是同一个分布
  • 检验:在此假设下,
    发生的概率高不高

已知的数据是,A方案下的农作物的产量服从

,标准差

未知的正态分布:

d4cef263e0ba3a72c747284aa70f0eb5.png

而B方案下的农作物的产量的样本均值

,样本数为5。下图为不同的均值、标准差对应的正态分布的图像:

489134073a09d144743745c1223de8ec.png

标准差越大,说明数据越分散,那么曲线的跨度就越大,曲线显得更加‘矮胖’;反之标准差越小,说明数据越集中,跨度越小,曲线显得更加‘高瘦’。

X如果服从正态分布

9a8a0b63f5aac09ee977e2da1cbc9d85.png

这里

采样5个点使其

图像如下:

f1184b82486872ffccafdf48ddc9659c.png

由此可见,那5个样本属于

的分布概率非常低。即A、B方案是同一个分布的可能性不大,我们有很大把握可以认为B方案比A方案好,能提高农作物产。 <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值