深度学习基础
文章平均质量分 66
Dr鹏
机器学习 & 信号处理
展开
-
强基固本——机器学习、深度学习必读书单及资源汇总
深度学习、机器学习的理论与实战类教材介绍与链接,以及教材学习相关的代码数据等原创 2021-11-07 01:42:39 · 1206 阅读 · 0 评论 -
训练期间如何打印、保存log
Python标准模块–logginghttps://blog.csdn.net/weixin_34149796/article/details/94541352?utm_source=app原创 2020-08-30 22:18:00 · 2485 阅读 · 1 评论 -
回归、自回归、循环神经网络(RNN)、LSTM
1 RNN的统计学基础1.1 回归:Investpedia:Regression refers to the relation between selected values of x and observed values of y (from which the most probable value of y can be predicted for any value of x). ...原创 2020-05-01 00:52:32 · 9779 阅读 · 3 评论 -
CNN的参数量、计算量(FLOPs、MACs)与运行速度
深度学习模型复杂度描述一个具体的深度学习模型,除了性能指标(分类任务的准确度、检测任务的mAP等),还需要考虑该模型的复杂度,即(前向推理的)计算量和参数个数(Parameters),前者描述了所需的计算力,后者描述了所需内存FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。...原创 2020-04-28 19:23:20 · 45294 阅读 · 7 评论 -
Few-shot Learning、One-shot Learning、Zero-shot Learning
机器学习任务按照对 样本量 的需求可以分为:传统监督式学习、Few-shot Learning、One-shot Learning、Zero-shot Learning。传统learning,炼丹模式。传统深度学习的学习速度慢,往往需要学习海量数据和反复训练后才能使网络模型具备泛化神功,传统learning可以总结为:海量数据 + 反复训练(炼丹模式)。为了 “多快好省” 地通往炼丹之路,...原创 2020-04-26 19:18:59 · 1444 阅读 · 1 评论 -
图像卷积前后尺寸计算
假设:输入图片大小 W×WFilter大小 F×F步长 Spadding的像素数 P输出图片大小为 N×N那么:N = (W − F + 2P )/S+1池化层的功能:第一,又进行了一次特征提取,所以能减小下一层数据的处理量。第二,能够获得更为抽象的信息,从而防止过拟合,也就是提高了一定的泛化性第三,由于这种抽象性,所以能对输入的微小变化产生更大的容忍,也就是保持了它...原创 2020-03-04 12:32:49 · 2108 阅读 · 0 评论