前言
python数据处理与分析学习过程中,需要有这样的一种意识,即元“为什么选择了python而不是其他?”既然选择了python,那么在实际应用中,它到底哪里不一样?大家说的方便、快捷、高复用性具体体现在哪里?带着问题进行学习,会有事半功倍的效果,记忆力和识别能力也会有所提高。
在本文,小编跟大家分享的是数据处理与分析中的“离散化或面元”。
为了便于分析,连续数据常常被离散化或拆分为“面元“(bin),假设有一组人员数据,而你希望将它们划分为不同的年龄组:
In [154]: ages=[20,22,25,27,21,23,37,31,61,45,41,32]
8种python技巧
离散化或面元:cut()
接下来将这些数据划分为“18到25“、”26到35“、”35到60“以及”60以上“几个面元。要实现此功能,需要使用pandas的cut函数:
codes属性:标号
In [29]: cats.codes
Out[29]: array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)
value_counts方法
该方法会按照离散化或面元结果,进行符合区间的值统计,具体使用方法如下:
In [30]: pd.value_counts(cats)
Out[30]:
(18, 25] 5
(35, 60] 3
(25, 35] 3
(60, 100] 1
dtype: int64
控制开/关:right=False
跟“区间“的数学符号一样,圆括号表示开端,而方括号则表示闭端(包括)。哪边是闭端可以通过right=False进行修改:
In [31]: pd.cut(ages,[18,26,36,61,100],right=False)
Out[31]:
[[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36, 61), [36, 61), [26, 36)]
Length: 12
Categories (4, interval[int64]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)]
设置面元名称:labels
设置自己的面元名称,将labels选项设置为一个列表或数组即可:
In [33]: group_names=['Youth','YoungAdult','MiddleAged','Senior']
In [34]: pd.cut(ages,bins,labels=group_names)
Out[34]:
[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult]
Length: 12
Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]
qcut()
qcut是一个非常类似于cut的函数,它可以根据样本分位数对数据进行面元划分。根据数据的分布情况,cut可能无法使各个面元中含有相同数量的数据点。而qcut由于使用的是样本分位数,因此可以得到大小基本相等的面元:
In [37]: data=np.random.randn(1000)
In [38]: cats=pd.qcut(data,4)
In [39]: cats
Out[39]:
[(-0.66, -0.0518], (0.68, 3.328], (-0.66, -0.0518], (0.68, 3.328], (-3.452, -0.66], ..., (-3.452, -0.66], (0.68, 3.328], (-3.452, -0.66], (-0.66, -0.0518], (-3.452, -0.66]]
Length: 1000
Categories (4, interval[float64]): [(-3.452, -0.66] < (-0.66, -0.0518] < (-0.0518, 0.68] < (0.68, 3.328]]
In [40]: pd.value_counts(cats)
Out[40]:
(0.68, 3.328] 250
(-0.0518, 0.68] 250
(-0.66, -0.0518] 250
(-3.452, -0.66] 250
设置自定义分位数
跟cut一样,也可以设置自定义的分位数(0到1之间的数值,包含端点):
In [41]: pd.qcut(data,[0,0.1,0.5,0.9,1])
Out[41]:
[(-1.276, -0.0518], (1.312, 3.328], (-1.276, -0.0518], (-0.0518, 1.312], (-3.452, -1.276], ..., (-3.452, -1.276], (-0.0518, 1.312], (-1.276, -0.0518], (-1.276, -0.0518], (-1.276, -0.0518]]
Length: 1000
Categories (4, interval[float64]): [(-3.452, -1.276] < (-1.276, -0.0518] < (-0.0518, 1.312] < (1.312, 3.328]]
总结
离散化或面元是数据处理与分析中的常用方法。python提供了便捷、丰富的方法。该类方法通常是解决数据分析、机器学习或深度学习中,需要将连续性变量