张凯院 矩阵论学习_高等代数(线性代数)的50个学习要点(一)

高等代数(或线性代数)课程是一门很重要的数学基础课程。通过这门课程的学习,可以使学生们初步掌握线性代数和多项式代数的基本知识和方法,培养基本的逻辑推理能力,并且了解代数学与几何学之间深刻的内在关联,同时为后面学习多元微积分微分方程概率统计泛函分析近世代数数值计算等基础课程打下必要的基础。

对于不少学生来讲,高等代数(或线性代数)课程似乎是一座难以翻越的大山,一方面它所涉及的数学内容高度抽象,另一方面具体的证明与计算过程也十分复杂和繁琐。本文收集整理了该课程中50个学习要点,希望能够对学生们的学习有所帮助。

在给出具体的学习要点前,我们先来简单地回顾一下高等代数(线性代数)的历史发展过程中一个最重要的片段——二次型化简问题的解决,这个基本问题的解决为后来进一步产生线性空间与线性变换的理论奠定了基础。通过了解这一段历史,可以使我们对这门课学习哪些内容,以及所要解决的是什么问题有一个比较清楚的认识。

引言     高等代数(线性代数)是怎么来的

在线性代数的历史发展进程中,二次型及其矩阵的特征值起到了突出的作用,这是因为它直接引导出了后续的“对角化”这一线性代数的中心主题。

在17世纪解析几何诞生后,人们自然地就运用坐标系化简的方法来化简一般的平面二次曲线方程,发现非退化的二次曲线其实只有椭圆、双曲线和抛物线这三种曲线,并且只有二次曲线方程中的3个二次项才真正决定了一条二次曲线是何种曲线。一条二次曲线方程中这3个二次项合在一起的式子就是该二次曲线的二次型,于是化简二次曲线的方程其实就归结为化简它的二次型。

接下来在18世纪中期,数学家欧拉在研究化简二次曲面方程时,也是用空间直角坐标系的平移与旋转的方法,的将二次曲面的方程化简成了最简单的形式,从而知道了非退化的二次曲面其实只有椭球面、单叶双曲面、双叶双曲面、椭圆抛物面和双曲抛物面这五种曲面。欧拉发现,可以通过求解一个3次方程,得到它的3个根,这3个根正好就是二次曲面方程化简后的新方程相关二次型的3个系数。现在我们知道,欧拉解的这个3次方程其实就是二次曲面方程中的相关二次型矩阵的特征方程,而他得到的3个根就是这个二次型矩阵的3个特征值,因此我们可以说欧拉已经猜想到了3个变量二次型的主轴定理。

在18世纪后期,数学家拉格朗日在研究分析力学中刚体旋转运动方程的化简问题时,明确写出了3个变量二次型

的矩阵的3次特征方程,从中解出了特征值 ,然后求出了它们所对应的特征向量。用今天的矩阵语言来说,拉格朗日用这些特征向量构造了3阶正交矩阵 ,再通过作正交线性替换

把上述二次型化成了标准形 ,这个标准形只有平方项,并且它们的系数正好是三个特征值。这就是3个变量二次型的 主轴定理,其几何意义是通过旋转3维空间的直角坐标轴(即作正交线性替换),使新的直角坐标轴与相关二次曲面的3条主轴(即对称轴)相重合,也就是将3条主轴作为了新的直角坐标轴,从而就可以消去原二次曲面方程的二次型中所有的非平方项,使得化简后的新方程具有最简单的形式,这样就知道了原来复杂的二次曲面方程表示的是何种曲面。到了19世纪的初期,数学家柯西引入了一般的 个变量的二次型,并得到了 个变量的 主轴定理。也用现在的矩阵语言来说,柯西的工作相当于是引入了二次型 

其中的,,然后他写下了一个相关的线性方程组,移项后得到特征方程组。接下来为了解这个特征方程组,必须要先使它的系数矩阵的行列式等于零,也就是要先求解一个次的特征方程

从而得到了对称矩阵的个实特征值,以及对应的的相互正交的单位特征向量 ,再以这个特征向量为列向量构造出阶正交矩阵) 。由特征方程组可以知道

于是有

这样就得到了关键的 矩阵对
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值