二分类变量相关性分析spss_SPSS教程 | 两个有序分类变量的相关分析及SPSS操作

本篇SPSS教程详细介绍了如何进行二分类变量的相关性分析,特别是针对有序分类变量的Kendall's tau-b相关分析。通过2型糖尿病患者授权能力与医疗支持的实例,展示了变量分组与相关系数计算,结果显示两者存在正相关关系。
摘要由CSDN通过智能技术生成

案例来源:中华护理杂志2018年3期

一.案例

2型糖尿病(T2DM)患者授权能力与医疗支持的相关性研究。

方法:通过单纯随机抽样选取2016年1月—4月某省市8所三级甲等综合医院就诊2型糖尿病患者作为研究对象。采用一般资料调查表、糖尿病授权评分表糖尿病态度、期望、需求简化版(DES-DSF)和患者慢性病评估量表糖尿病态度、期望、需求简化版(PACIC-DSF),调查2型糖尿病患者的一般资料、授权能力及医疗支持情况。

二.说明

若要探讨患者授权能力与医疗支持的相关性,则需要用到双变量的相关分析。如果两组数据均为符从正态分布的连续变量,并且存在线性关系,则选用皮尔逊相关分析;若数据不服从双变量正态分布,则选用斯皮尔曼相关分析;若数据为两个有序分类变量,则选用Kendall's tau-b相关分析。这节主要介绍两个有序分类变量的Kendall's tau-b相关分析。

三.SPSS操作

1.先将得分数据进行分类:

授权能力得分:0代表≤40分,1代表41-60分,2代表>60分。

医疗支持得分:0代表≤30分,1代表31-40分,2代表>40分。

千万不要自己观察数据将其分组,只要设定好范围,SPSS是可以自动实现的,这里以授权能力得分为例进行讲解,医疗支持得分分组的操作类似。

在输出变量名称框中填入‘授权能力得分分组’,标签处也可以命名为此,点击变化量,即可实现‘授权能力得分-授权能力得分分组’的变量命名。

点击旧值和新值,从得分最低到最高依次进行变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值