python因为有GIL锁,因此多线程也只能使用一个处理器,但是numpy是例外:
http://scipy-cookbook.readthedocs.io/items/ParallelProgramming.html 这篇文字讲了numpy的并行计算,我把自己的理解总结如下:
numpy本身的矩阵运算(array operations)可以绕过GIL
因为numpy内部是用C写的,不经过python解释器,因此它本身的矩阵运算(array operations)都可以使用多核,此外它内部还用了BLAS(the Basic Linear Algebra Subroutines),因此可以进一步优化计算速度。
多线程(Threads),numpy的矩阵运算和IO一样,都会释放GIL
据我理解即使释放解释器,numpy因为不依赖解释器,所以仍然在运行;而其他线程这个时候也可以使用解释器,如果其他线程也有numpy的代码,那么该numpy也可以同样释放解释器。
while a thread is waiting** for IO **(for you to type something, say, or for something to come in the network) python releases the GIL so other threads can run. And, more importantly for us, while numpy is doing an array operation, python also releases the GIL. Thus if you tell one thread to do, (A和B都是numpy矩阵):
>>> A = B + C
>

这篇博客介绍了Python中numpy库如何实现矩阵运算的并行计算,尽管Python的GIL限制了多线程的并行执行,但numpy由于其内部C实现和使用BLAS,能够在进行矩阵运算时绕过GIL,实现多核利用。同时,通过对比多线程和多进程,展示了在numpy矩阵运算中并行计算的优势,特别是在多进程情况下,性能提升更为显著。
最低0.47元/天 解锁文章

2046

被折叠的 条评论
为什么被折叠?



