机器学习中的信息论

自信息量   一个事件的自信息量是该事件发生概率的负对数,事件发生的概率越大,自信息量越少,反之自信息量越多。也称不确定性函数,具有可加性。定义自信息量I(x)I(x)I(x): I(x)=log(1p(x))I(x)=log⁡(1p(x)) I(x)=\log\left(\frac{1}{p...

2018-09-16 09:44:25

阅读数:59

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭