神经网络 python 多类别_Keras入门(一)搭建深度神经网络(DNN)解决多分类问题...

Keras介绍

Keras是一个开源的高层神经网络API,由纯Python编写而成,其后端可以基于Tensorflow、Theano、MXNet以及CNTK。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果。Keras适用的Python版本是:Python 2.7-3.6。

Keras,在希腊语中意为“角”(horn),于2015年3月份第一次发行,它可以在Windows, Linux, Mac等系统中运行。那么,既然有了TensorFlow(或Theano、MXNet、CNTK),为什么还需要Keras呢?这是因为,尽管我们可以用TensorFlow等来创建深度神经网络系统,但Tensorflow等使用相对低级的抽象,直接编写TensorFlow代码具有一定的挑战性,而Keras在TensorFlow的基础上,增加了较易使用的抽象层,使用起来更加简单、高效。

什么样的场合适合用Keras呢?如果你有如下需求,请选择Keras:

简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)

支持CNN和RNN,或二者的结合

无缝CPU和GPU切换

如果想用在你的电脑上使用Keras,需要以下工具:

Python

TensorFlow

Keras

在这里,我们选择TensorFlow作为Keras的后端工具。使用以下Python代码,可以输出Python、TensorFlow以及Keras的版本号:

import sys

import keras as K

import tensorflow as tf

py_ver = sys.version

k_ver = K.__version__

tf_ver = tf.__version__

print("Using Python version " + str(py_ver))

print("Using Keras version " + str(k_ver))

print("Using TensorFlow version " + str(tf_ver))

在笔者的电脑上,输出的结果如下:

Using TensorFlow backend.

Using Python version 3.5.1 (v3.5.1:37a07cee5969, Dec 6 2015, 01:54:25) [MSC v.1900 64 bit (AMD64)]

Using Keras version 2.1.5

Using TensorFlow version 1.6.0

下面,笔者将使用IRIS数据集(鸢尾花数据集,一个经典的机器学习数据集,适合作为多分类问题的测试数据),使用Keras搭建一个深度神经网络(DNN),来解决IRIS数据集的多分类问题,作为Keras入门的第一个例子。

IRIS数据集介绍

IRIS数据集(鸢尾花数据集),是一个经典的机器学习数据集,适合作为多分类问题的测试数据,它的下载地址为:http://archive.ics.uci.edu/ml...。

IRIS数据集是用来给鸢尾花做分类的数据集,一共150个样本,每个样本包含了花萼长度(sepal length in cm)、花萼宽度(sepal width in cm)、花瓣长度(petal length in cm)、花瓣宽度(petal width in cm)四个特征,将鸢尾花分为三类,分别为Iris Setosa,Iris Versicolour,Iris Virginica,每一类都有50个样本。

IRIS数据集具体如下(只展示部分数据,顺序已打乱):

读取数据集

笔者的IRIS数据集以csv格式储存,笔者将使用Pandas来读取IRIS数据集,并对目标变量进行0-1编码(One-hot Encoding),最后将该数据集分为训练集和测试集,比例为7:3。完整的Python代码如下:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelBinarizer

# 读取CSV数据集,并拆分为训练集和测试集

# 该函数的传入参数为CSV_FILE_PATH: csv文件路径

def load_data(CSV_FILE_PATH):

IRIS = pd.read_csv(CSV_FILE_PATH)

target_var = 'class' # 目标变量

# 数据集的特征

features = list(IRIS.columns)

features.remove(target_var)

# 目标变量的类别

Class = IRIS[target_var].unique()

# 目标变量的类别字典

Class_dict = dict(zip(Class, range(len(Class))))

# 增加一列target, 将目标变量进行编码

IRIS['target'] = IRIS[target_var].apply(lambda x: Class_dict[x])

# 对目标变量进行0-1编码(One-hot Encoding)

lb = LabelBinarizer()

lb.fit(list(Class_dict.values()))

transformed_labels = lb.transform(IRIS['target'])

y_bin_labels = [] # 对多分类进行0-1编码的变量

for i in range(transformed_labels.shape[1]):

y_bin_labels.append('y' + str(i))

IRIS['y' + str(i)] = transformed_labels[:, i]

# 将数据集分为训练集和测试集

train_x, test_x, train_y, test_y = train_test_split(IRIS[features], IRIS[y_bin_labels], \

train_size=0.7, test_size=0.3, random_state=0)

return train_x, test_x, train_y, test_y, Class_dict

搭建DNN

接下来,笔者将展示如何利用Keras来搭建一个简单的深度神经网络(DNN)来解决这个多分类问题。我们要搭建的DNN的结构如下图所示:

我们搭建的DNN由输入层、隐藏层、输出层和softmax函数组成,其中输入层由4个神经元组成,对应IRIS数据集中的4个特征,作为输入向量,隐藏层有两层,每层分别有5和6个神经元,之后就是输出层,由3个神经元组成,对应IRIS数据集的目标变量的类别个数,最后,就是一个softmax函数,用于解决多分类问题而创建。

对应以上的DNN结构,用Keras来搭建的话,其Python代码如下:

import keras as K

# 2. 定义模型

init = K.initializers.glorot_uniform(seed=1)

simple_adam = K.optimizers.Adam()

model = K.models.Sequential()

model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))

model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))

model.add(K.layers.Dense(units=3, kernel_initializer=init, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer=simple_adam, metrics=['accuracy'])

在这个模型中,我们选择的神经元激活函数为ReLU函数,损失函数为交叉熵(cross entropy),迭代的优化器(optimizer)选择Adam,最初各个层的连接权重(weights)和偏重(biases)是随机生成的。这样我们就讲这个DNN的模型定义完毕了。这么简单?Yes, that's it!

训练及预测

OK,定义完模型后,我们需要对模型进行训练、评估及预测。对于模型训练,我们每次训练的批数为1,共迭代100次,代码如下(接以上代码):

# 3. 训练模型

b_size = 1

max_epochs = 100

print("Starting training ")

h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, shuffle=True, verbose=1)

print("Training finished \n")

为了对模型有个评估,感知模型的表现,需要输出该DNN模型的损失函数的值以及在测试集上的准确率,其Python代码如下(接以上代码):

# 4. 评估模型

eval = model.evaluate(test_x, test_y, verbose=0)

print("Evaluation on test data: loss = %0.6f accuracy = %0.2f%% \n" \

% (eval[0], eval[1] * 100) )

训练100次,输出的结果如下(中间部分的训练展示已忽略):

Starting training

Epoch 1/100

1/105 [..............................] - ETA: 17s - loss: 0.3679 - acc: 1.0000

42/105 [===========>..................] - ETA: 0s - loss: 1.8081 - acc: 0.3095

89/105 [========================>.....] - ETA: 0s - loss: 1.5068 - acc: 0.4270

105/105 [==============================] - 0s 3ms/step - loss: 1.4164 - acc: 0.4667

Epoch 2/100

1/105 [..............................] - ETA: 0s - loss: 0.4766 - acc: 1.0000

45/105 [===========>..................] - ETA: 0s - loss: 1.0813 - acc: 0.4889

93/105 [=========================>....] - ETA: 0s - loss: 1.0335 - acc: 0.4839

105/105 [==============================] - 0s 1ms/step - loss: 1.0144 - acc: 0.4857

......

Epoch 99/100

1/105 [..............................] - ETA: 0s - loss: 0.0013 - acc: 1.0000

43/105 [===========>..................] - ETA: 0s - loss: 0.0447 - acc: 0.9767

84/105 [=======================>......] - ETA: 0s - loss: 0.0824 - acc: 0.9524

105/105 [==============================] - 0s 1ms/step - loss: 0.0711 - acc: 0.9619

Epoch 100/100

1/105 [..............................] - ETA: 0s - loss: 2.3032 - acc: 0.0000e+00

51/105 [=============>................] - ETA: 0s - loss: 0.1122 - acc: 0.9608

99/105 [===========================>..] - ETA: 0s - loss: 0.0755 - acc: 0.9798

105/105 [==============================] - 0s 1ms/step - loss: 0.0756 - acc: 0.9810

Training finished

Evaluation on test data: loss = 0.094882 accuracy = 97.78%

可以看到,训练完100次后,在测试集上的准确率已达到97.78%,效果相当好。

最后是对新数据集进行预测,我们假设一朵鸢尾花的4个特征为6.1,3.1,5.1,1.1,我们想知道这个DNN模型会把它预测到哪一类,其Python代码如下:

import numpy as np

# 5. 使用模型进行预测

np.set_printoptions(precision=4)

unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32)

predicted = model.predict(unknown)

print("Using model to predict species for features: ")

print(unknown)

print("\nPredicted softmax vector is: ")

print(predicted)

species_dict = {v:k for k,v in Class_dict.items()}

print("\nPredicted species is: ")

print(species_dict[np.argmax(predicted)])

输出的结果如下:

Using model to predict species for features:

[[ 6.1 3.1 5.1 1.1]]

Predicted softmax vector is:

[[ 2.0687e-07 9.7901e-01 2.0993e-02]]

Predicted species is:

versicolor

如果我们仔细地比对IRIS数据集,就会发现,这个预测结果令人相当满意,这个鸢尾花样本的预测结果,以人类的眼光来看,也应当是versicolor。

总结

到此为止,笔者就把这个演示例子给讲完了,作为入门Keras的第一步,这个例子还是可以的。回顾该模型,首先我们利用Pandas读取IRIS数据集,并分为训练集和测试集,然后用Keras搭建了一个简单的DNN模型,并对该模型进行训练及评估,最后看一下该模型在新数据集上的预测能力。从中,读者不难体会到Keras的优越性,因为,相比TensorFlow,搭建同样的DNN模型及模型训练、评估、预测,其Python代码无疑会比Keras来得长。

最后,附上该DNN模型的完整Python代码:

# iris_keras_dnn.py

# Python 3.5.1, TensorFlow 1.6.0, Keras 2.1.5

# ========================================================

# 导入模块

import os

import numpy as np

import keras as K

import tensorflow as tf

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelBinarizer

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

# 读取CSV数据集,并拆分为训练集和测试集

# 该函数的传入参数为CSV_FILE_PATH: csv文件路径

def load_data(CSV_FILE_PATH):

IRIS = pd.read_csv(CSV_FILE_PATH)

target_var = 'class' # 目标变量

# 数据集的特征

features = list(IRIS.columns)

features.remove(target_var)

# 目标变量的类别

Class = IRIS[target_var].unique()

# 目标变量的类别字典

Class_dict = dict(zip(Class, range(len(Class))))

# 增加一列target, 将目标变量进行编码

IRIS['target'] = IRIS[target_var].apply(lambda x: Class_dict[x])

# 对目标变量进行0-1编码(One-hot Encoding)

lb = LabelBinarizer()

lb.fit(list(Class_dict.values()))

transformed_labels = lb.transform(IRIS['target'])

y_bin_labels = [] # 对多分类进行0-1编码的变量

for i in range(transformed_labels.shape[1]):

y_bin_labels.append('y' + str(i))

IRIS['y' + str(i)] = transformed_labels[:, i]

# 将数据集分为训练集和测试集

train_x, test_x, train_y, test_y = train_test_split(IRIS[features], IRIS[y_bin_labels], \

train_size=0.7, test_size=0.3, random_state=0)

return train_x, test_x, train_y, test_y, Class_dict

def main():

# 0. 开始

print("\nIris dataset using Keras/TensorFlow ")

np.random.seed(4)

tf.set_random_seed(13)

# 1. 读取CSV数据集

print("Loading Iris data into memory")

CSV_FILE_PATH = 'E://iris.csv'

train_x, test_x, train_y, test_y, Class_dict = load_data(CSV_FILE_PATH)

# 2. 定义模型

init = K.initializers.glorot_uniform(seed=1)

simple_adam = K.optimizers.Adam()

model = K.models.Sequential()

model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))

model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))

model.add(K.layers.Dense(units=3, kernel_initializer=init, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer=simple_adam, metrics=['accuracy'])

# 3. 训练模型

b_size = 1

max_epochs = 100

print("Starting training ")

h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, shuffle=True, verbose=1)

print("Training finished \n")

# 4. 评估模型

eval = model.evaluate(test_x, test_y, verbose=0)

print("Evaluation on test data: loss = %0.6f accuracy = %0.2f%% \n" \

% (eval[0], eval[1] * 100) )

# 5. 使用模型进行预测

np.set_printoptions(precision=4)

unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32)

predicted = model.predict(unknown)

print("Using model to predict species for features: ")

print(unknown)

print("\nPredicted softmax vector is: ")

print(predicted)

species_dict = {v:k for k,v in Class_dict.items()}

print("\nPredicted species is: ")

print(species_dict[np.argmax(predicted)])

main()

参考文献

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值