qq_33472146的博客

私信 关注
醒了的追梦人
码龄5年

生命不息,奋斗不止,Fighting!!!

  • 266,057
    被访问量
  • 91
    原创文章
  • 28,806
    作者排名
  • 109
    粉丝数量
  • 于 2015-12-22 加入CSDN
获得成就
  • 获得141次点赞
  • 内容获得155次评论
  • 获得664次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #语音识别#深度学习#自然语言处理#算法#NLP#TensorFlow#机器学习#Python#神经网络
TA的专栏
  • 5G
    1篇
  • 网络
    3篇
  • 算法
    3篇
  • 微信小程序
    1篇
  • Python
    40篇
  • 机器学习and深度学习
    43篇
  • 前端
    1篇
  • 考试平台
  • 工具
    27篇
  • 语音识别
    13篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

Legend-用python中的matplotlib.legend()函数显示图例(中文显示)

这个过程其实很简单,代码如下:import matplotlib.pyplot as pltfrom matplotlib import font_managermy_font=font_manager.FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=30) plt.xlabel(u'X轴',fontproperties=my_font) plt.ylabel(u'Y轴',fontproperties=my_font)
原创
517阅读
0评论
0点赞
发布博客于 6 月前

Pycharm报错:ReadTimeoutError: HTTPSConnectionPool(host=‘files.pythonhosted.org‘, port=443): Read timed

今天在pycharm里面pip install 库 的时候报了这个错,如图所示:---------------------------------吐槽--------------------------------------------已经好久没用过这个软件了,导致今天打开的时候,已经过期,花了一会时间激活了软件,开始编写程序…---------------------------------吐槽--------------------------------------------言归正传,这
原创
166阅读
0评论
0点赞
发布博客于 7 月前

VC++报错:LINK : fatal error LNK1168: cannot open Debug/vehiclef.exe for writing Error executing link.e

报错如图所示:今天在用VC++写程序的时候,前几次编译都没问题,但是突然就报了这个错,经过检查代码,发现没有问题,报错原因可能是因为版本不兼容。解决方法:1、在VC++里面再重新新建一个项目,然后把代码贴过去,再次编译就没问题了。2、也可以去任务管理器里找一找该进程是否仍在运行,直接kill掉。PS:在退出程序的时候,最好还是按任意键退出程序,直接关闭窗口这种操作方式,有可能会导致程序并没停止。...
原创
243阅读
0评论
0点赞
发布博客于 7 月前

5G基站:宏基站&&微基站&&皮基站&&飞基站

四月来临,春暖花开,终于慢慢滴都开始恢复正常了。5G基站分为宏基站和微小基站两种,宏基站主要用于室外覆盖,微小基站发射功率较小,主要用于室内场景。 根据3GPP组织的规则,无线基站分为4类,分别是宏基站、微基站、皮基站和飞基站。划分基站主要依据是功率和容量。宏基站的功率在10W以上,覆盖能力(覆盖半径)在200米以上,可同时接入用户数视基站规模而定,一般在1000个以上;微基站功率为500mW...
原创
2492阅读
0评论
2点赞
发布博客于 11 月前

博弈论(潜在博弈、纳什均衡)

博弈论是用于分析和研究参与主体的行为之间相互影响以及影响后决策均衡问题的理论。博弈论使用严谨的数学模型解决现实中利害冲突,是研究具有斗争或竞赛性质现象的数学方法。一个标准的博弈模型由多个元素组成,可以用一个三元函数来表示。在博弈理论中 ,纳什均衡代表着博弈过程中的稳定状态,在参与者的策略集合中,当没有一个参与者可以靠改变自身策略来提高自身收益时,此时参与者的策略集合即纳什均衡。潜在博弈是博弈的...
原创
1258阅读
0评论
0点赞
发布博客于 1 年前

匈牙利算法

看了一晚上这个算法,有点晕。。。找到了一篇讲的很有趣的,先搁这。匈牙利算法
原创
142阅读
0评论
0点赞
发布博客于 1 年前

软件定义网络SDN

这绝对是最长的一个寒假了,已做好四月再返校的准备了。。。SDN的核心特征是提倡把网络控制逻辑完整地从底层基础设施分离出来,整个网络框架被切分为两层:控制层和数据层。这两层互相解耦,以分别制订控制指令和按照指令进行数据转发。控制层中基于软件的控制策略是集中式的,使得网络更加智能化,减少对硬件的依赖。运用SDN能显著地增强车联网网络管理的可扩展性和灵活性,并通过实时掌握网络状态,来科学决策资源分配...
原创
489阅读
0评论
0点赞
发布博客于 1 年前

计算卸载决策依据

计算任务进行计算卸载的时候,主要有两个依据。1.能否降低程序运行时延用s表示本地执行速度,k表示完成某个计算任务需要的计算资源,那么这个模块在本地执行需要的时间是:k/s(1)当前网络的带宽是N,云端的计算速度是L,计算任务的大小是M。计算任务上传至云端执行所需的时间是:M/N+k/L(2)(1)式即模块在本地运行的时间,(2)式即模块上传至云端时所耗费的时间,要使终端性能获得提高,即...
原创
1172阅读
2评论
1点赞
发布博客于 1 年前

移动边缘计算网络架构

1.移动边缘计算服务平台移动边缘计算服务平台主要由移动边缘计算基础设施和移动边缘计算应用平台、应用管理系统三层逻辑实体组成。2.MEC基本架构...
原创
943阅读
2评论
2点赞
发布博客于 1 年前

模拟器-目录协议+监听协议.zip

一个计算机系统结构课程里面用得到的目录协议和监听协议的模拟器,用这个模拟器可以实现目录协议和监听协议的相关功能,这个模拟器简洁方便。
zip
发布资源于 2 年前

Tomasulo算法模拟器.zip

一个计算机系统结构课程里面用得到的Tomasulo模拟器,用这个模拟器可以实现Tomasulo的相关功能,这个模拟器简洁方便。
zip
发布资源于 2 年前

MyCache模拟器.zip

一个计算机系统结构课程里面用得到的MyCache模拟器,用这个模拟器可以实现MyCache的相关功能,这个模拟器简洁方便。
zip
发布资源于 2 年前

MIPSsim模拟器.zip

一个计算机系统结构课程里面需要用到的模拟器,用这个模拟器可以实现MIPSsim的相关功能,模拟器简洁方便。
zip
发布资源于 2 年前

DreamBird-master.zip

这是一个关于天气预报的微信小程序,可以通过下载此代码来运行小程序,小程序中天气预报的功能有预测未来七天的天气情况、实时监测当地的空气状况等。
zip
发布资源于 2 年前

一个微信小程序-猜价格.zip

一个微信小程序,里面的功能涉及到猜价格等等,可以方便用户进行随机猜价格。这个小程序可以直接运行,没有用到云服务,可以直接用测试ID来运行。
zip
发布资源于 2 年前

微信小程序--初学篇

目标:一个微信小程序+一篇软件测试管理的论文之前我是没做过移动端的应用的,可能这也是一个机会??多一个技能好过没有吧(ps:强行还行,因为这跟我的研究方向完全没关系)。找了个小例子看了一下,主要就是写js呗,以下是那个小程序的效果图:要做的目标小程序是一个二手交易类的小程序,目前还没开始,后续等小程序往后推进了,会继续更新小程序这方面的东西的(ps:主要还是像以前一样更新踩过的坑吧...
原创
120阅读
0评论
0点赞
发布博客于 2 年前

机器学习--多变量线性回归

还有几天就国庆了,趁着国庆好好调整一下,昨天被一些THU的大佬们的报告给深深打击了,我感jio我就好像没学过计算机一样(笑哭)。。。读博的欲望更加强烈了,希望有一天能变得像他们一样强(想想而已,啊哈哈哈),OK,开始标题的内容了。。。1.多维特征先举个例子,还是上次那个房价模型的例子,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x 1 ,x...
原创
101阅读
1评论
1点赞
发布博客于 2 年前

机器学习--单变量线性回归

嗯…,之所以写这个,是因为最近上课在学这个。。。 想了又想,还是做个记录吧。最近有点不在状态,仿佛是开学导致的(小声bb)。难受!话不多说,开始正题!1.模型表示概念:单元线性回归,试图学得一个线性模型以尽可能准确地预测实值输出标记。单变量这个词仅仅是称呼单一变量的高大上的方式。在回归中,均方误差(平方损失)是回归任务中最常用的性能度量。通过让均方误差最小化来得到最优解。如果是拟合更加...
原创
127阅读
0评论
1点赞
发布博客于 2 年前

Tutorial2--语音情感识别

感觉写这篇文章距离上一篇已经很久了(啊哈哈哈…),自己在8月的时候回去了这么久,所以做的东西也搁置了这么久。不过我还是觉得人还是需要放松的,回到家里,家里人一直给我做好吃的,到外面下馆子,然后自己又去西安玩了几天,感jio还行。现在回来了,继续开干,Fighting!!!之所以又写这篇是因为这次用的数据集和上一次不一样,所以得出来的模型也不一样,目前又重新在训练模型,继上次回去之前训练出来的模型...
原创
248阅读
4评论
1点赞
发布博客于 2 年前

简短python代码--实现一个爱心Love

代码如下:print(’
’.join([’’.join([(‘Love’[(x-y) % len(‘Love’)] if ((x0.05)**2+(y0.1)**2-1)**3-(x0.05)*2(y0.1)**3 <= 0else’ ') for x in range(-30, 30)]) for y in range(30, -30, -1)]))效果如下(没截全):反正就这...
原创
3253阅读
2评论
1点赞
发布博客于 2 年前

EMO-DB数据集介绍(即berlin的那个数据集)

首先想说的就是这个数据集,官方给的介绍也太敷衍了,完全是没有价值的介绍。EMO-DB数据集是由柏林工业大学录制的德语情感语音库,由10位演员(5男5女)对10个语句(5长5短)进行7种情感(中性/nertral、生气/anger、害怕/fear、高兴/joy、悲伤/sadness、厌恶/disgust、无聊/boredom)的模拟得到,共包含800句语料,采样率48kHz(后压缩到16kHz),...
原创
2629阅读
8评论
1点赞
发布博客于 2 年前

语音情感识别--语音(声音的预处理)

语音信号(声音是什么)声音是由物体振动产生的声波,是通过介质(空气或固体、液体)传播并能被人或动物听觉器官所感知的波动现象,最初发出振动的物体叫声源。声音(语音消息)的基本模拟形式是一种称为语音信号的声学波。语音信号可以通过麦克风转化成电信号,转换成语音波形图,如下图为消息"should we chase"的波形图。横坐标表示时间,纵坐标表示振幅。文本"should we chase"按照发音可...
原创
1602阅读
5评论
2点赞
发布博客于 2 年前

解释batch&&epoch&&iteration

epoch:1个epoch等于使用训练集中的全部样本训练一次,也就是说epoch的值就是整个数据集被轮流执行几次iteration:1个iteration等于使用batchsize个样本训练一次batchsize:批大小,在深度学习中,一般采用SGD(随机梯度下降)训练,即每次训练在训练集中取batchsize个样本训练如果训练集有500个样本,batchsize = 10 ,那么训练完整个...
原创
77阅读
0评论
1点赞
发布博客于 2 年前

语音情感识别--理论篇

这是之前看的一些论文,然后提炼一下可能经常想看到的东西吧。语音情感识别主要包括语音语料库的采集,语音信号预处理,语音情感特征提取,语音情感分类。以上为语音情感识别主要步骤。语音情感特征提取(1):选择和提取合适的语音情感特征对提高识别准确率来说非常重要。目前,对语音信号的特征分析主要包括语音信号数字化,时域和频域的相关分析以及Gabor变换等。常用于语音情感识别研究的声学特征主要有韵律特征,...
原创
1393阅读
6评论
2点赞
发布博客于 2 年前

Tutorial--语音情感识别

OK,沉迷了快两个星期,终于有进展了啊啊啊!!!这段时间内心崩溃,感觉毫无思路,但是我没放弃!!!看了许多论文,然后代码在这个星期也终于调通了。不过还是有很多地方值得优化,后面再继续努力吧!其实我个人觉得语音识别这一块的商用还不够,情感识别就更别说了,而且识别率这一块有待提升。开始正题数据集用的是EMO-DB数据集。并以此充当训练集,测试集自己想用哪些音频就可以用哪些音频,但是命名和文件路...
原创
503阅读
16评论
1点赞
发布博客于 2 年前

Pycharm报错:Error:failed to find libmagic. Check your installation

今天在调试程序的时候,Pycharm报了这个错。解决方法1:使用命令pip uninstall python-magicpip install python-magic-bin==0.4.14解决方法2:卸载python-magic然后在官网可以下载64位对应安装包。接着使用命令pip install python_magic_bin-0.4.14-py2.py3-none-wi...
原创
2184阅读
1评论
3点赞
发布博客于 2 年前

Pycharm报错:Error:Microsoft Visual C++ 14.0 is required

这篇博文是接着上篇的,今天在pip install webrtcvad的时候报了这个错。然后还给了一个微软的下载链接,但是我找了半天也没找到。。。出现这个问题的解决方法就是安装Microsoft visual c++ 14.0。我自己把这个东西安装上以后,pip install 就没问题了。如果还会出现 .Net framework版本过低的问题,小于4.5的最低版本要求:就重新安装 ....
原创
492阅读
2评论
1点赞
发布博客于 2 年前

Pycharm报错:Error while installing webrtcvad

在使用pip命令pip install webrtcvad时报了这个错。可能可以解决的方法:将pip升级到最新版本。命令:pip show pip 查看pip版本python -m pip install --upgrade pip 升级pippip install +包名 安装包...
原创
404阅读
0评论
1点赞
发布博客于 2 年前

Pycharm报错:ImportError:DLL load failed:动态链接库(DLL)初始化例程失败

今天在安装cpu版本的tensorflow时报了这个错,python版本为3.5.2。原因:最新的tensorflow安装包对于比较老的处理器不支持。解决方法:出现这种错误的原因是最近tensorflow安装包不支持较老的处理器,需要安装老版本的tensorflow,换成tensorflow的1.5版本的没有问题。步骤:1.卸载目前安装的tensorflow命令为:pip uninsta...
原创
1646阅读
0评论
1点赞
发布博客于 2 年前

Pycharm报错:ERROR: Command "python setup.py egg_info" failed with error code 1

今天在调试程序的时候,Pycharm报了这个错,然后自己弄了半天。最后发现其实原因在一个很简单的地方,我却没发现。下面开始介绍怎么处理这个错误,只是有可能的解决方法,不一定适合所有人。方法一:更新setuptools和pip:命令如下:pip install --upgrade setuptoolspython -m pip install --upgrade pip升级完成之后继...
原创
689阅读
0评论
1点赞
发布博客于 2 年前

Python2.7.13和Python3.5.2的共生存问题--环境切换

先说一下我之前在Pycharm里面遇到的问题吧。最开始我用的是Python2的环境,但是现在主流是Python3,而且Python3相比Python2真的方便许多。当然一些老的项目还是用Python2写的,而且也没有维护更新,而一些新的项目又没有(令人。。。)。当时我是在Pycharm里面想把环境切换至Python2的环境来适配老项目的,但是发现环境变量配置了,在Pycharm里面的Setti...
原创
119阅读
0评论
1点赞
发布博客于 2 年前

XLNet与BERT以及语言模型的对比

XLNet与BERT的对比XLNet和BERT都是预测一个句子的部分词,但是背后的原因是不同的。BERT使用的是Mask语言模型,因此只能预测部分词(总不能把所有词都Mask了然后预测?)。而XLNet预测部分词是出于性能考虑,而BERT是随机的选择一些词来预测。除此之外,它们最大的区别其实就是BERT是约等号,也就是条件独立的假设–那些被MASK的词在给定非MASK的词的条件下是独立的。但是...
原创
1075阅读
0评论
1点赞
发布博客于 2 年前

自回归(AR)语言模型和自编码(autoencoding)模型--术语解读

在阅读论文时,我们经常会看到一些术语,这些术语可能比较难以理解。比如自回归(Autoregressive,AR)语言模型和自编码(autoencoding)模型等,这可能让不少人感到困惑。***自回归***是时间序列分析或者信号处理领域喜欢用的一个术语,我们这里理解成语言模型就好了。一个句子的生成过程如下:首先根据概率分布生成第一个词,然后根据第一个词生成第二个词,然后根据前两个词生成第三个词...
原创
4587阅读
0评论
6点赞
发布博客于 2 年前

Pycharm报错:Python2中的导入cPickle包换成Python3环境之后无法用--解决方法

原因是因为在Python3中cPickle包已经更名为pickle,所以使用方法也相应地改变了。具体方法如下:import pickle as cPickle也可以直接导入pickle包更方便。import picklepickle可以把字典、列表等结构化数据存到本地文件,读取后返回的还是字典、列表等结构化数据。但是file.write、file.read存取的对象是字符串。 读取...
原创
741阅读
0评论
2点赞
发布博客于 2 年前

Tutorial--怎么看自己安装的Tensorflow是GPU版本的还是CPU版本的

例子1:为了获取你的 operations 和 Tensor 被指派到哪个设备上运行, 用log_device_placement 新建一个 session, 并设置为 True来记录设备指派情况。例子(矩阵相乘):import tensorflow as tf# 新建一个 grapha = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shap...
原创
13328阅读
1评论
6点赞
发布博客于 2 年前

语音情感识别--踩点篇

不管是情感语音识别,还是语音情感识别,含义是一样的,都是对带有情感的语音信号进行情感的正确判断。最传统的情感语音识别是基于机器学习下的有监督学习完成的。有监督,即:使用训练集训练出一个模型,然后使用该模型对测试集中的语音信号进行情感状态的正确判断。传统的机器学习可以理解为模式识别,即需要通过三个环节来完成操作:数据库、特征参数、识别网络。这三个环节均有大量的文献介绍,其中特征参数这一环节衍生出了...
原创
658阅读
0评论
3点赞
发布博客于 2 年前

情感语音识别--数据库

语音情感数据库分为离散型和维度型。再有根据情感产生分类分为自然型,表演型,引导型。离散型指的是把情感分为高兴、愤怒、恐惧、惊奇、悲伤、厌恶等。连续型就是先采集,然后让其它人根据三维情感评分,情感维度包括:唤醒度、愉悦度、支配度。可以参考有关SAM的文章。(MEASURING EMOTION: THE SELF-ASSESSMENT MANIKIN AND THE SEMANTIC DIFFER...
原创
2350阅读
5评论
0点赞
发布博客于 2 年前

Pycharm报错:error--inconsistent use of tabs and spaces in indentation

今天晚上遇见了这个报错。原因:就是代码格式有问题,可能是代码缩进,空格等问题。解决方法:调整代码缩进的格式,每次缩进使用8个空格,反正代码的编写格式没问题了,这个错误就解决了。...
原创
107阅读
0评论
0点赞
发布博客于 2 年前

pycharm常用快捷键和使用技巧

常用快捷键1、Ctrl + Enter:在下方新建行但不移动光标;2、Shift + Enter:在下方新建行并移到新行行首;3、Ctrl + /:注释(取消注释)选择的行;4、Ctrl + Alt + L:格式化代码(与QQ锁定热键冲突,关闭QQ的热键);5、Ctrl + Shift + +:展开所有的代码块;6、Ctrl + Shift + -:收缩所有的代码块;7、Ctrl +...
原创
96阅读
0评论
0点赞
发布博客于 2 年前

bert&kera的文本分类的小项目

前不久了解到bert是在去年十月份的时候由google发行,当时引起一阵轩然大波。因为它在NLP上取得的效率远远超过google以前发布的word2vec的。也可以说bert就是word2vec的升级版,在特征提取效率上面有很显著的效果。然后昨天我看到有位大佬说结合keras库用bert很方便,而且还提供了许多功能模块,所以就借鉴着调试了这个bert_keras的文本分类的小项目。不过据昨天某...
原创
482阅读
2评论
0点赞
发布博客于 2 年前

pycharm报错:TypeError: ‘range’ object does not support item assignment

今天调试一个用keras库联合bert做的文本情感分类的小项目的时候,遇到了这个Bug。然后花了几分钟将这个Bug解决掉了。问题如图所示:原因:尝试使用range() 创建整数列表(导致“TypeError: ‘range’ object does not support item assignment”)有时你想要得到一个有序的整数列表,所以range() 看上去是生成此列表的不错方式...
原创
505阅读
0评论
0点赞
发布博客于 2 年前

pycharm--报错:codecs.open()及文件操作[及python安装pandas库失败咋解决]

------------------------------小插曲--------------------------------------python安装pandas库失败(针对各种情况,此种方法可能有效)python版本为3.5开始使用pip install pandas报错,在安装pandas的时候开始可以载入,但是后面显示 raise ReadTimeoutError(self._...
原创
1813阅读
0评论
0点赞
发布博客于 2 年前

Tensorflow--迁移学习

首先,我说一下自己看了几篇文章后的理解。我觉得迁移学习的目的就是为了减少工作量,提高效率,避免做重复累赘的工作。这就跟我们在实际项目迭代开发时一样,假如老板突然提了一个新的需求,要你重做一个系统,你不可能又重新开始设计,然后编码吧。。。 肯定得在之前做的系统上进行迭代开发,修修改改,然后提交给老板看。等测试系统上线之后,再根据不同的反馈进行代码调整。迁移学习的目的也正是如此,如果两个模型之间...
原创
145阅读
0评论
0点赞
发布博客于 2 年前

NLP--BERT(可以说是word2vec的升级版吧)

自从2018年9月份BERT发布以来,就一直大火。在将文字转化为词向量,然后训练词向量这一块很出色。打破了多项nlp记录。然后最近我刚好在学习word2vec这一块,也需要将word2vec这一块改写为doc2vec,不过现在觉得貌似用bert更好。下面是关于bert的一些介绍的文章:BERT使用详解(实战)【NLP】彻底搞懂BERTBERT的理解后面肯定会用上这个的,咚咚咚~...
原创
741阅读
0评论
0点赞
发布博客于 2 年前

Tensorflow--tutorial--建造神经网络(输入层,隐藏层,输出层)

建造一个完整的神经网络,包括添加神经层,计算误差,训练步骤,判断是否在学习。***代码如下:***(我把注释写的非常详细,不用怕看不懂)from __future__ import print_function#导入所需模块import tensorflow as tfimport numpy as np#定义添加神经层的函数def add_layer(),它有四个参数:输入值、输入的...
原创
3949阅读
0评论
2点赞
发布博客于 2 年前

Tensorflow--优化器optimizer--加速神经网络训练

Tensorflow中常见的优化器有以下几种:目前个人比较常用的是第二种优化器。加速神经网络的训练有以下几种方法:1.SGD(Stochastic Gradient Descent)随机梯度下降法它的思想是,将样本数据挨个送入网络,每次使用一个样本就更新一次参数,这样可以极快地收敛到最优值,但会产生较大的波动。还有一种是小批量梯度下降法,它的思想是,将数据拆分成一小批一小批的,分批送入神...
原创
297阅读
0评论
0点赞
发布博客于 2 年前

查看Git下载的文件所在电脑的具体目录位置

打开git输入命令ls下载的文件,就会在下面的列表里然后cd进入该文件之后pwd就会显示该文件在电脑中的所在目录
原创
3765阅读
1评论
1点赞
发布博客于 2 年前

很多公开的数据集(涉及很多领域)

各领域公开数据集下载常用公共数据集
原创
2009阅读
0评论
1点赞
发布博客于 2 年前

文本情感分析(CNN&LSTM--Tensorflow)

嗯…,这个项目我自己调了快一个星期,最终在昨晚把代码跑通了,然后在今天早上又解决了两三个bug,总的来说,bingo思密达~突然发现调试程序还挺有趣的(ps:当然仅仅是在调出来的那一刻,看见数据在飞奔地运行,畅快=.=)OK,下面先说一下项目的流程:首先,当然是文本预处理输入文本,在将输入文本转化成向量之前,我们需要将标点符号、括号、问号等删去,只留下字母、数字和字符, 同时将大写字母转...
原创
4100阅读
50评论
0点赞
发布博客于 2 年前

Pycharm报错:ValueError: The passed save_path is not a valid checkpoint :D/python/--

报错如图所示:原因:项目所在的文件导入路径的字符太长,会出现这种错误。改正:将路径的字符减短即可。
原创
6333阅读
2评论
1点赞
发布博客于 2 年前

Pycharm报错:UnicodeEncodeError: 'utf-8' codec can't encode character '\udcd5'---

突然发现调试程序还挺有趣的(ps:当然仅仅是在调出来的那一刻,看见数据在飞奔地运行,畅快=.=)
原创
918阅读
0评论
0点赞
发布博客于 2 年前

报错:cannot run program--createprocess error=2,系统找不到指定的文件

报错如图所示:当时报了这个错,我很纳闷。。。可能的原因:原来的工程目录(B盘)下,保存了python的编译环境,包括python.exe文件。工程目录移动到F盘以后,工程设置中找不到python.exe程序,因此报错,需要修改设置。解决方法:一:二:点击这个然后在这里把解释器改成自己安装好的那个Python.exe把这两处的配置调好之后,就不会再出现这种报错情况了。...
原创
19421阅读
1评论
4点赞
发布博客于 2 年前

python中numpy中的shape和get_shape解析

例子:wordVectors.shape在这里返回的是矩阵或者数组的维数,例如返回结果是(400000,50),括号里的第一个数为第一维,第二个数为第二维,以此类推。int(value.get_shape()[0])在这里返回的是维度的个数OK,先记到这里,等后面再遇到了其它的用法,再继续更新=.=。...
原创
1626阅读
0评论
0点赞
发布博客于 2 年前

相对路径和绝对路径(关于代码中文件的引用问题)

相对路径:相对于当前文件的路径,即从当前路径开始的路径绝对路径:主页文件或者目录在硬盘上真正的路径,即从盘符开始的路径“…/”来表示上一级目录,“…/…/”表示上上级的目录,以此类推(此处均为两个点加一个/)“./”:代表目前所在的路径“/”开头,代码根目录例子:这个是我的盘符里面的完整的根路径然后要引用里面的wordlist.npy和wordvectors.npy文件,有这两种方...
原创
947阅读
0评论
0点赞
发布博客于 2 年前

Git教程和使用Github

Git教程使用Github在Windows操作系统下运行Shell脚本,安装之后,将安装路径下的bin文件夹的路径作为环境变量。于是我们就能够在CMD中通过命令sh xxx.sh 来运行Shell脚本。也可以通过cmd中进入git所在目录的bin文件夹下,输入sh .\test.sh来运行shell脚本。...
原创
70阅读
0评论
0点赞
发布博客于 2 年前

语音识别项目(数据集用的是thchs-30)

首选,我必须吐槽一下,这个数据集我下了快两个星期(ps:没错,你没有看错,我真的下了快两个星期,中途要么是网络断了,然后下载失败,要么是不知道是啥莫名其妙的原因导致下载失败,对了,中途那个网站好像还关闭过,当时我正在下载!!!)。在这里感谢一下师姐,她帮我请另一个师兄用迅雷最后下载好了,对,就是昨晚,我终于见到了完整的thchs-30数据集(哈哈哈)。OK,正式开始,首先我把这个项目总结一下:...
原创
2901阅读
17评论
3点赞
发布博客于 2 年前

使用pip命令在python中安装tensorflow

此为最后结果检测图。步骤:一:首先查看一下系统中是否安装了pip工具,利用pip --version命令,如下图所示:二:然后使用pip工具查看TensorFlow是否已安装,可以使用pip list命令,如下图所示:我这个是安装好了的,正常情况下是没有的。三:接着使用pip安装包的命令,安装TensorFlow数学系统命令:pip install tensorflow这里需要...
原创
4521阅读
0评论
4点赞
发布博客于 2 年前

解决pycharm中运行代码时出现的No module named 'numpy.core._multiarray_umath'问题(续集)

继上篇说了这个问题,我在昨天又遇到了这个问题。今天终于彻彻底底地将这个bug解决了。方法:把你之前安装的环境全部卸载,然后重新安装。这样就可以解决这个问题了。我百度过很多说法,有的说重装numpy,这种说法是最多人的。我试过了,但是没啥用。直到我将所有的Python相关的环境全部卸载后,重新安装才解决这个问题。然后如果你装了之后有可能还会出现其它问题,可以用这条命令升级numpy。命令:pi...
原创
1884阅读
0评论
0点赞
发布博客于 2 年前

python3.7的版本号安装tensorflow

步骤:(1) 下载tensorflow的whl包:由于tensorflow还没有官方支持python3.7,所以pip直接是搜索不到合适的tensorflow的,所以需要下载whl文件包手动安装。有人说google的网址上不去没法下载,解决办法是去清华镜像找,那上面最新的tensorflow是1.8cpu版本(截至2018-12google官方最新的是1.12),不过没关系,依然可以用下面的方...
原创
50219阅读
0评论
4点赞
发布博客于 2 年前

Linux中tar命令的用法

把常用的tar解压命令总结如下:tar-c: 建立压缩档案-x:解压-t:查看内容-r:向压缩归档文件末尾追加文件-u:更新原压缩包中的文件这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个。下面的参数是根据需要在压缩或解压档案时可选的。-z:有gzip属性的-j:有bz2属性的-Z:有compress属性的-v:显示所有过程-O:将文件解开到...
原创
205阅读
0评论
0点赞
发布博客于 2 年前

./&../&/&../../这四种路径解读

./表示当前目录即当前路径…/表示父级目录即上一级路径/表示根目录即网站根路径…/…/表示上两级路径下面为例子表示:实例一: 通过href链接下载访问一个静态文件,进行路径区分。第一个表示…/斜杠的路径,resources为WebRoot路径下的下一级路径。这个路径不可用,没有带项目名称。第二个表示/斜杠的路径:这个路径也访问不了这个静态资源文件第三个表示./表示当前目录...
原创
186阅读
0评论
0点赞
发布博客于 2 年前

语言模型--n-gram解读

n元语法是一个非常经典的语言模型。一、N-Gram的原理N-Gram是基于一个假设:第n个词出现与前n-1个词相关,而与其他任何词不相关。(这也是隐马尔可夫当中的假设。)整个句子出现的概率就等于各个词出现的概率乘积。各个词的概率可以通过语料中统计计算得到。假设句子T是有词序列w1,w2,w3…wn组成,用公式表示N-Gram语言模型如下:P(T)=P(w1)*p(w2)*p(w3)***p(...
原创
379阅读
1评论
0点赞
发布博客于 2 年前

解决pycharm中运行代码时出现的No module named 'numpy.core._multiarray_umath'问题

我在debug代码时,就遇到了这个问题,下面记录一下解决方法。解决方法:方法一:可以尝试升级一下numpy版本,可能是因为numpy的版本太低所致。步骤:查看当前的numpy版本然后更新Numpy版本方法二:就是各种试了,不过最后肯定是可以解决问题的啦。步骤:网上好多人说是需要升级numpy,我试了,结果如下:上图说明:需要更新的numpy已经存在了,即不需要更新,我看到后边说...
原创
2549阅读
0评论
0点赞
发布博客于 2 年前

解决pycharm里面python控制台出现Couldn't connect to console process的问题

第一次遇到这个问题,我各种百度查,发现没有一种办法适合我这种情况(难受)。后面尝试着在pycharm里面看设置有没有出问题,发现也没啥问题。端口也没冲突本地也可以启动(意思就是在IDE外面也可以用这个Python),哦,对了,上面第一张图那个run with python console得取消勾选,这个好像是可以解决文件在python console的显示问题,反正最好取消勾选。正...
原创
3974阅读
0评论
0点赞
发布博客于 2 年前

深度学习--word2vec和doc2vec词向量模型

今天在这两个模型的理解上出现了疑问,现在先贴上这些资料解释,后面把代码跑通了再来贴代码(biu~)。word2vec&doc2vec词向量模型Word2vec和Doc2vec原理理解并结合代码分析word2vec和doc2vecWord2Vec&Doc2Vec总结【译】word2vec&doc2vec做文本情感分析...
原创
307阅读
0评论
0点赞
发布博客于 2 年前

文本情感分析(介绍文章)--总结

本文主要对网上能搜索到的,现有的基于文本的情感分析方法进行总结和归纳。最终应包含4个内容:1.什么是基于文本的情感分析2.常用词典和数据库3.自然语言处理流程4.深度学习情感分析工具什么是情感分析:对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。利用机器提取人们对某人或事物的态度,从而发现潜在的问题用于改进或预测。这里我们所说的情感分析主要针对态度(attitude)。注:...
原创
1850阅读
0评论
2点赞
发布博客于 2 年前

转:机器学习论文与书籍推荐

机器学习论文与书籍推荐
转载
44阅读
0评论
0点赞
发布博客于 2 年前

如何学习机器学习的一点心得(转载+自己的一条补充)

结合自己的学习经历,总结一下如何学习机器学习。我自己的学习过程其实是非常混乱和痛苦的,一个人瞎搞现在也不知道入没入门。希望能对其他想自学机器学习而找不到方向的人有一点点帮助。一、可以读读一些科普性的,综述性的东西。南京大学周志华教授写的科普文章《机器学习和数据挖掘》还不错,对机器学习和数据挖掘的区别说的挺好。另外对机器学习的历史和前景做了说明。文章最后也给出了领域内比较重要的会议和期刊。吴军...
转载
109阅读
0评论
0点赞
发布博客于 2 年前

dropout--保持0.5的dropout来提高泛化能力

在实践中多次看到通过保持0.5的dropout来提高泛化能力,目前尚未深刻理解这个意思。。。附:理解dropout
原创
1452阅读
0评论
1点赞
发布博客于 2 年前

机器学习--提高神经网络的泛化能力

***泛化能力***是指机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为泛化能力。在实际情况中,我们通常通过测试误差来评价学习方法的泛化能力。泛化能力的性质通常期望经训练样本训练的网络具有较强的泛化能力,也就是对新输入给出合理响应的能力。应当指出并非训练的次数越多越能得到正确的输入输出映射关...
原创
1838阅读
1评论
1点赞
发布博客于 2 年前

神经网络DNN--详解

深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。1.从感知机到神经网络感知机的模型是一个有若干输入和一个输出的模型,如下图:输出和输入之间学习到一个线性关系,得到中间输出结果:z=∑i=1mwixi+bz=∑i=1mwixi+b接着是一个神经元激活函数...
原创
25938阅读
3评论
6点赞
发布博客于 2 年前

Transformer模型--Attention机制

Transformer模型来源于谷歌2017年的一篇文章(Attention is all you need)。在现有的Encoder-Decoder框架中,都是基于CNN或者RNN来实现的。而Transformer模型汇中抛弃了CNN和RNN,只使用了Attention来实现。因此Transformer是一个完全基于注意力机制的Encoder-Decoder模型。在Transformer模型中...
原创
408阅读
0评论
1点赞
发布博客于 2 年前

CBHG模块--提取序列特征

CBHG模块如下图所示。首次提出在Goggle的一篇文章:TACOTRON: TOWARDS END-TO-END SPEECH SYNTHESIS回到CBHG模块,该模块善于提取序列特征。下面为模块步骤:1.输入序列,先经过K个1-D卷积,第K个卷积核(filter)通道为k,这些卷积核可以对当前以及上下文信息有效建模;2.卷积输出被堆叠(stack)一起,沿着时间轴最大池化(maxp...
原创
1673阅读
0评论
0点赞
发布博客于 2 年前

.npy文件

深度学习–迁移学习在使用训练好的模型时,其中有一种保存的模型文件格式叫.npy。打开方式·实现代码:import numpy as nptest=np.load('./bvlc_alexnet.npy',encoding = "latin1") #加载文件doc = open('1.txt', 'a') #打开一个存储文件,并依次写入print(test, file=doc) #...
原创
10791阅读
0评论
1点赞
发布博客于 2 年前

爬虫--一个简单的搜索引擎

代码如下:# -*- coding: utf-8 -*-"""Created on Fri Aug 18 15:58:13 2017@author: JClian"""import reimport bs4import urllib.request from bs4 import BeautifulSoup import urllib.parseimport sysse...
原创
1229阅读
0评论
0点赞
发布博客于 2 年前

Keras建立RNN模型进行IMDb情感分析的Python代码

Keras建立RNN模型进行IMDB情感分析的Python代码
转载
379阅读
0评论
0点赞
发布博客于 2 年前

用Keras来搭建深度神经网络DNN--解决多分类问题

Keras介绍Keras是一个开源的高层神经网络API,由纯Python编写而成,其后端可以基于Tensorflow、Theano、MXNet以及CNTK。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果。Keras适用的Python版本是:Python 2.7-3.6。Keras,在希腊语中意为“角”(horn),于2015年3月份第一次发行,它可以在Windows, Lin...
原创
451阅读
0评论
0点赞
发布博客于 2 年前

手写递归神经网络–手把手教你写一个RNN

总结: 我总是从迷你程序中学到很多。这个教程用python写了一个很简单迷你程序讲解递归神经网络。递归神经网络即RNN和一般神经网络有什么不同?出门左转我们一篇博客已经讲过了传统的神经网络不能够基于前面的已分类场景来推断接下来的场景分类,但是RNN确有一定记忆功能。废话少说,上图:layer_0就是输入层,layer_1就是隐层,layer_2就是输出层。什么叫隐层呢?顾名思义,隐层就是隐藏...
转载
243阅读
0评论
0点赞
发布博客于 2 年前

搭建CNN,RNN等神经网络

使用Keras进行深度学习:RNN和双向RNN讲解及实践对比学习用 Keras 搭建 CNN RNN 等常用神经网络如何构建RNN神经网络的输入在Tensorflow上搭建RNN用 TensorFlow 实现基于 LSTM 的文本分类...
原创
862阅读
0评论
0点赞
发布博客于 2 年前

语音识别--CTC算法

CTC算法全称叫:Connectionist temporal classification。从字面上理解它是用来解决时序类数据的分类问题,也即用来解决输入序列和输出序列难以一一对应的问题。举例来说,在语音识别中,我们希望音频中的音素和翻译后的字符可以一一对应,这是训练时的一个很天然的想法。但是要对齐是一件很困难的事,有人说话快,有人说话慢,每个人说话快慢不同,不可能手动地对音素和字符对齐,这样...
原创
255阅读
0评论
0点赞
发布博客于 2 年前

语音识别--汉明窗

首先,hamming()函数的作用是返回一个L点的对称海明窗列向量w。语音信号一般在10ms到30ms之间,我们可以把它看成是平稳的。为了处理语音信号,我们要对语音信号进行加窗,也就是一次仅处理窗中的数据。因为实际的语音信号是很长的,我们不能也不必对非常长的数据进行一次性处理。明智的解决办法就是每次取一段数据,进行分析,然后再取下一段数据,再进行分析。怎么仅取一段数据呢?一种方式就是构造一个...
原创
820阅读
0评论
1点赞
发布博客于 2 年前

Pycharm下直接使用Github的版本控制功能,建立远程仓库并提交代码

Pycharm使用技巧
原创
126阅读
0评论
0点赞
发布博客于 2 年前

关于PyCharm中Structure的字母标识含义

今天偶然看到PyCharm的左下角的两个图标,但是不知道是啥意思,于是了解了一下。如图:PyCharm的Structure功能可以列出代码结构,方面我们从宏观了解代码。从Structure我们可以看出当前代码文件中有多少个全局变量、函数、类以及类中有多少个成员变量和成员函数。其中V图标表示全局变量,粉红色的f图标表示普通函数,左上角带红色小三角的f图标表示内嵌函数,C图标表示类,类中m图...
原创
590阅读
0评论
1点赞
发布博客于 2 年前

《基于音频和文本的多模态语音情感识别的TensorFlow实现》的项目(写的很人性化的哦!)

项目的模型使用双循环神经网络(RNN)对音频和文本序列中的信息进行编码,然后结合这些信息源中的信息来预测情感类。应用IEMOCAP数据集的时候,提出的模型将数据分配给四种情绪类别(即愤怒,快乐,悲伤和中性)中的一种方面优于以前的最先进方法,精度从68.8%到71.8%不等。项目需求需求tensorflow1.4 (tested on cuda-8.0, cudnn-6.0)python3....
原创
1768阅读
4评论
0点赞
发布博客于 2 年前

基于音频和文本的多模态语音情感识别(一篇极好的论文,值得一看哦!)

基于音频和文本的多模态语音情感识别语音情感识别是一项具有挑战性的任务,在构建性能良好的分类器时,广泛依赖于使用音频功能的模型。本文提出了一种新的深度双循环编码器模型,该模型同时利用文本数据和音频信号来更好地理解语音数据。由于情感对话是由声音和口语内容组成的,因此我们的模型使用双循环神经网络(RNN)对音频和文本序列中的信息进行编码,然后结合这些信息源中的信息来预测情感类。该体系结构从信号级到语言...
原创
5071阅读
5评论
3点赞
发布博客于 2 年前

IEMOCAP数据集

IEMOCAP数据集描述交互式情绪二元运动捕捉(iemocap)数据库是一个动作、多模式和多峰值的数据库,最近在南加州大学的Sail实验室收集。它包含大约12小时的视听数据,包括视频、语音、面部运动捕捉、文本转录。它由两个阶段组成,参与者在其中执行即兴表演或脚本场景,特别是选择以引出情感表达。IEMOcap数据库由多个注释员注释成类别标签,如愤怒、快乐、悲伤、中立,以及维度标签,如配价、激活和支...
原创
6460阅读
5评论
1点赞
发布博客于 2 年前

MFCC特征参数理解

一 MFCC简介MFCC,梅尔倒谱系数,是一种语音特征。梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)是在Mel标度频率域提取出来的倒谱参数,Mel标度描述了人耳频率的非线性特性,它与频率的关系可用下式近似表示:式中f为频率,单位为Hz。下图展示了Mel频率与线性频率的关系:二、语音特征参数MFCC提取过程可用HTK...
原创
554阅读
0评论
0点赞
发布博客于 2 年前

维特比算法详解(隐马尔科夫模型)

嗯…,在写这个之前看了几篇文章,写的极其学术化,根本就看不懂吗。。。我个人认为写文章就是应该写的通俗易懂才好,让别人也能学会,能理解到你想表达的东西。维特比算法说白了就是动态规划实现最短路径,就是说只要知道“动态规划可以降低复杂度”这一点就能轻松理解维特比算法。维特比算法是一个特殊但应用最广的动态规划算法,利用动态规划,可以解决任何一个图中的最短路径问题。而维特比算法是针对一个特殊的图——...
原创
451阅读
0评论
0点赞
发布博客于 2 年前

用HTK来提取语音文件的mfcc特征

一 HTK简介HTK(HMM Tools Kit)是一个剑桥大学开发的专门用于建立和处理HMM的实验工具包[1],主要应用于语音识别领域,也可以应用于语音合成、字符识别和DNA排序等领域。HTK经过剑桥大学、Entropic公司及Microsoft公司的不断增强和改进,使其在语音识别领域处于世界领先水平,另外,HTK还是一套源代码开放的工具箱,其基于ANSI C的模块化设计方式可以方便地嵌入到...
原创
567阅读
0评论
0点赞
发布博客于 2 年前

Pycharm Debug调试(纯干货)

使用Debug调试代码1.打断点一个断点标记了一个代码行,当Pycharm运行到该行代码时会将程序暂时挂起。注意断点会将对应的代码行标记为红色,取消断点的操作也很简单,在同样位置再次单击即可。如图所示,打了两个断点当你将鼠标指针悬停在断点上方时,Pycharm会显示断点的关键信息,行号以及脚本属性,如果你希望更改该断点的属性,右击断点:可以尝试对断点属性进行个性化更改,然后观察图标...
原创
18835阅读
6评论
46点赞
发布博客于 2 年前

一款酷炫的插件,写代码变得更有趣了!

一款酷炫的插件,全名是activate-power-mode atom package !Github页面链接点这里!下面展示一下效果图:似乎有一种少女心的感觉哦,快去安装吧!
原创
529阅读
0评论
0点赞
发布博客于 2 年前

关于前端的一些资源

这是老早以前收藏的一些资源了,但是貌似进入了“收藏-永不在看”的模式(= ̄ω ̄=),于是乎将这些资源先整理出来,可能以后用的上?? 是的吧。。。汇总一些知名的 JavaScript 开发开源项目如何隐藏滚动条但又能滚动,不用js实现Android ApplicationsJavascript模板引擎mustache.js详解nginx反向代理配置技术相关的博客关键CSS和Webpac...
原创
66阅读
0评论
0点赞
发布博客于 2 年前

Github-Python-NLP-核心技术与算法源码andIMDB情感分析语料库

Github-Python-NLP-核心技术与算法源码
原创
523阅读
0评论
0点赞
发布博客于 2 年前

转载:CRF++使用教程

CRF++使用教程
转载
162阅读
0评论
0点赞
发布博客于 2 年前

转载:基于卷积神经网络和时域金字塔池化的语音情感分析

基于卷积神经网络和时域金字塔池化的语音情感分析
转载
116阅读
0评论
0点赞
发布博客于 2 年前

一些关于语音识别和语音情感识别的资源

这些资源要么就收费很贵,要么用不了,嗯…,但是也花了很长时间收集,先留着吧。。。基于SVM的语音情感识别(MATLAB GUI界面和文档)点这里!PythonNLP情感识别项目实战教程(源码+数据集)点这里!python 语音情感分析 搜一搜?基于SVM的情感分析系统点这里!基于SVM的语音情感识别系统设计点这里!基于SVM的语音情感识别系统点这里!语音情感识别 – 资源汇总点这里...
原创
5816阅读
2评论
11点赞
发布博客于 2 年前

空间金字塔池化Spatial pyramid pooling net,用于语义分割

空间金字塔的作用金字塔池化层有如下的三个优点,第一:他可以解决输入图片大小不一造成的缺陷。第二:由于把一个feature map从不同的角度进行特征提取,再聚合。第三:同时也在object recongtion增加了精度。其实,是因为在卷积层的后面对每一张图片都进行了多方面的特征提取,他就可以提高任务的精度。我们可以看到这里的spatital pyramid pooling layer就是把...
原创
486阅读
0评论
0点赞
发布博客于 2 年前

举例理解监督学习、无监督学习、半监督学习和强化学习的区别

Machine learning机器学习是Artificial inteligence的核心,分为四类:1、Supervised learning监督学习是有特征(feature)和标签(label)的,即便是没有标签的,机器也是可以通过特征和标签之间的关系,判断出标签。举例子理解:高考试题是在考试前就有标准答案的,在学习和做题的过程中,可以对照答案,分析问题找出方法。在高考题没有给出答案的时...
原创
6412阅读
0评论
3点赞
发布博客于 2 年前

一些可能用得上的资源

Google深度学习系列视频谷歌开发者视频中文频道:点这里!清华大学开源软件镜像站提供了 Anaconda 仓库的镜像点这里!方法一:打开Anaconda Prompt,输入以下命令即可添加conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config -...
原创
66阅读
0评论
0点赞
发布博客于 2 年前

Anaconda和Pycharm的安装和配置

1.Anaconda下载安装步骤一:进入官网(https://www.anaconda.com/download/#windows)下载对应正确的版本,这里选择的是Windows 64bit;步骤二:双击下载好的exe文件进行安装,点击next,点击i agree,选择just for me点击next,点击browse选择安装目录,勾选红色框点击install等待完成,点击next,点击s...
原创
995阅读
0评论
0点赞
发布博客于 2 年前