python营业数据分析_小案例-使用python进行销售数据分析

本文通过Python对朝阳医院2018年销售数据进行分析,涉及数据理解、清洗、模型构建及可视化。分析了月均消费次数、金额、客单价,并揭示消费趋势。数据清洗步骤包括处理缺失值、数据类型转换等,最后通过构建模型计算各项业务指标并绘制消费趋势折线图。
摘要由CSDN通过智能技术生成

数据分析步骤:提出问题、理解数据、数据清洗、构建模型、数据可视化

数据:朝阳医院2018年销售数据

一、提出问题

从销售数据中分析以下业务指标:月均消费次数、月均消费金额、客单价、消费趋势

二、理解数据

(1)使用python读取excel数据

(2)打印前5行:salesDf.head()

(3)有多少行,多少列: salesDf.shape

(6578,7)

(4) 查看列的数据类型:salesDf.dtypes

三、数据清洗

数据清洗包括7个步骤:选择子集

列名重名

删除重复值

缺失值处理

一致化处理

数据排序

异常值处理

(1)选择子集

本案例不需要选择子集

(2)列名重命名

(3)删除重复值

本案例暂时不需要删除重复值

(4)缺失值处理

python缺失值有3种:

a. Python内置的None值

b. 在pandas中,将缺失值表示为NA,表示不可用not available。

c. 对于数值数据,pandas使用浮点值NaN(Not a Number)表示缺失数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值