tushare pro的token凭证码设置 1、首先需要注册新用户可以点击邀请链接注册:https://tushare.pro/register?reg=3481322、从头像上点击用户名,打开个人主页;3、,点击接口token,点击右边纸张图标,复制;4、在python中进行如下操作即可:token=‘你复制下来的token’ts.set_token(token)pro=ts.pro_api()df =...
7、python多种方式进行成单回归预测 多种方案成单预测比较 1 背景和挖掘目标 基于关键的业务指标进行成单预测,对影响成单的因子了解2 分析步骤01 基于关键特征数据底表的分组处理02 关于机会、名片表的处理 基于业务逻辑或者数据表现进行分组,查看03 处理成单跨期导致的名片-成单的数据对应问题04 观察各关键指标对结果的影响大小,并选择有显著影响的特征05 利用均值原理计算成单06 Seque...
28、python强化学习、持续学习 1、持久化(Persistence) 持久化是程序开发中的专业术语,是指将程序数据在持久化状态和瞬时状态间转换的机制 保存模型 恢复模型 2、模型持久化方法sklearn.exeternals.joblib.dump(model,filePath) 保存模型model 内存中的模型对象filePath 需要保存的文件路径model=s...
7、与神经网络学习相关的参数(SGD、adam等) 1 参数的更新四种方法:见图01 随机梯度下降法:SGD使用参数的梯度,沿着梯度方向更新参数,并且重复这个步骤多次,从而逐渐靠近最优参数,这个过程称为随机梯度下降法 # 源代码class SGD: def _init_(self,lr=0.01): self.lr=lr def update(self,para...
7、与神经网络学习相关的参数(SGD、adam等) 1 参数的更新四种方法:见图01 随机梯度下降法:SGD使用参数的梯度,沿着梯度方向更新参数,并且重复这个步骤多次,从而逐渐靠近最优参数,这个过程称为随机梯度下降法 # 源代码class SGD: def _init_(self,lr=0.01): self.lr=lr def update(self,para...
6、MNIST数据分类(详细函数代码) 1、MNIST数据训练要点手写数字识别:01 像素:28*28=78402 标签:神经网络对图像进行分类,分配正确的标签,这些标签是0到9共10个数字中的一个,这意味着神经网络有10个输出层节点,每个节点对应一个可能得答案或标签,如果答案是“0”,输出吃呢个第一个节点激发而其余的输出节点则保持抑制状态。03 输出:试图让神经网络生成0和1的输出,对于激活函数而言是不可能的,这回导致...
5、keras神经网络,Sequential序贯模型(二分类、多分类) 1 Sequential参数model = Sequential() model.add(Dense(32, input_dim=78))解释:Sequential 的第一个关于输入数据shape的参数,后边的各个层则可以自动推到出中间数据的shape01 传递一个input_shape的关键字参数给第一层,如果填入None则表示此位置可能是任何正整数。数据的batch大小不应...
4、简单的神经网络(MLP神经网络分类基础) 目录1、神经网络:(Artifical Neural Network)2、MLP简介3、MLP方法4、MLP简单的二分类代码案例1、神经网络:(Artifical Neural Network)全程为人工神经网络,是一种模仿生物神经网络(大脑)的结构和功能的数学模型或计算机模型生物神经细胞;神经细胞是构成神经系统的基本单元,称为生物神经元,简称神经元# 简单神经...
3 神经网络基础(阶跃、sigmoid、relu激活函数的代码实现) 目录1、 输入权重计算2、与门的实现3、非门的实现4、或门的实现5、感知机可以实现与、或、非门的逻辑 6、阶跃函数的实现7、sigmoid 函数的实现8、阶跃函数和sigmoid函数相比较9、ReLU函数1、 输入权重计算import numpy as npx=np.array([0,1]) # s输入w=np.array([0.5,0.5...
2 简单的矩阵运算基础知识 AB矩阵相乘的结果AB矩阵的行:A的行数AB矩阵的列:B的列数所得结果行数为 numpy.dotnumpy.array() 这个是数组mat() 矩阵行数据1、数组&矩阵from numpy import * a1=[1,2,3] # 为list a1=[[1,2,3],[2,3,4]]01 一维数组 a2=mat(a1)...
27、python时间序列预测(ARIMA模型案例代码) 目录1、模型识别01 主要的模型02 截尾和拖尾03 如何判断拖尾和截尾2、时间序列算法公式3、详细步骤01 平稳性检验(adf检验)02 对数据进行差分构造平稳序列03 平稳性监测04 白噪声检验05 定阶06 模型预测4、案例代码1、模型识别01 主要的模型AR(P)模型(Autoregressive Model) 自回...
26、python密度聚类方法(DBSCAN密度聚类) 1、DBSCAN概念 基于密度的带噪声的空间聚类应用算法,它是将簇定义为密度相连的点的大集合,能够把足够高密度的区域划分为簇,并且可在噪声的空间数据集中发现任意形状的聚类。2、密度聚类和距离聚类密度聚类:只要临近区域的密度、对象、或者数据点的数目超过耨个阈值,就继续聚类,可以根据与周伟特点进行聚类kmeans和分层聚类都是基于距离进行聚类,只能发现球状的簇,五发现其他形式的簇...
25、python分层聚类案例(sklearn方法) 1 sklearn层次聚类01 ward 最小化所有聚类内的平方差总和,这是一种方差最小化的优化方向,这是与k-means的目标韩式相似的优化方法,但是用聚类分层的方法处理。02 Maximum 或者complete linkage 最小化聚类对样本之间的最大距离03 Average linkage 最小化聚类两个聚类中样本之间的最大距离 2 案例...
24、python分层聚类案例(scipy方法) 目录1、分层聚类算法2、方法3、分析步骤4、案例1、分层聚类算法 层次聚类算法又称为树聚类算法,它根据数据之间的距离,透过一种层次架构方式,反复将数据进行聚合,创建一个层次以分解给定的数据集。2、方法01 聚类方法linkage=scipy.cluster.hierarchy.linkage(data,method='single')data 训练...
23、python协同过滤推荐案例代码 目录1、数据结构2、模型构建01 用户评分向量(User Rating Vector)02 商品评分向量(Item Rating Vector)03 距离计算(Distance)04 相似度计算(Similarity)05 相似邻居计算(Neighborhoods)3、调用方法4、基于人的协同过滤代码5、基于物品的系统过滤代码案例协同推荐(Collabo...
7、Cannot broadcast operands together. 问题;:Cannot broadcast operands together. 不能一起广播操作数,数据维度不一样举例:数据维度不一样data_mean=data_train.mean()data_std=data_train.std()data_train=(data_train-data_mean)/data_stdValueError: Cannot broadca...
6、ValueError: Wrong number of items passed 11, placement implies 1 1 问题:ValueError: Wrong number of items passed 11, placement implies 12 解释:表明你试图把太多维度的项数放在太少的项数里,本例子中是把11项数试图放在1项3 源代码:Mp['报名数']=pandas.merge( Mp, true, left_on='日期', ...
22、python关联规则案例代码 1、关联:(Association) 把两个或者两个以上在意义上,有密切联系的项组合在一起关联规则(Association Rules AR) 用于从大量数据中挖掘出有价值的数据项之间的相关关系 协同过滤(Collaborative Filtering,简称CF) 协同过滤常常被用于分辨某位特定固定可能感兴趣的东西,这些结论来自于对其他相似顾客对哪些产品...
21、python的K-means聚类分析方法案例代码 1、聚类分析是按照个体的特征将他们分类,让同一个类别内的个体之间具有较高的相似度,不同类别之间具有较大的差异性;2、基本理论Kmeans:K表示算法当中类的个数Means 均值算法:K-means 使用均值算法把数据分成k个类别的算法Kmeans算法:kmeans算法的目标,是把n个样本点划分到k个类中,使得每个点都属于离他最近的质心对应的类,以此作为聚类的标准质心:是指一...
12、python特征工程内容介绍 目录1 特征工程重要性2 特征工程内容包括3 数据处理 第一种、量纲不一 第二种 虚拟变量 第三种 缺失值处理特征工程(Feature Engineering)其本质上是一项工程活动,他目的是最大限度地从原始数据中提取特征以供算法和模型使用1 特征工程重要性 01 特征越好,灵活性越强(允许选择不复杂的模型,运行速度快,可以更好的理解和维护)...