服务器框架为什么不会性能差,WEB服务器性能跟踪框架的设计与实现

摘要:

WEB服务器结构的日益复杂,其故障也越来越难以定位,且很难有效的优化整个服务器的性能瓶颈,因此很有必要对WEB请求执行过程中的每一个步骤进行性能跟踪,以方便的定位性能瓶颈和故障之所在。 传统的性能跟踪手段,主要是在需要进行性能跟踪的代码段添加代码,通过标准输出或者日志来记录性能等数据。但是这种方式需要将性能跟踪的代码分散在业务流程代码中,比较混乱,当业务代码需要更改、添加或者删除时,相应的性能跟踪代码也需要进行修改,不利于维护和扩展。 本文提出了一种WEB服务器性能跟踪框架的设计与实现,主要针对的是WEB服务器中常见的Servlet容器,从单个WEB请求各个周期的性能分析与一段时间WEB请求的统计分析两个方面,分析WEB服务器的性能数据,从而为优化WEB服务器的性能瓶颈提供正确的数据。同时,为了降低代码的耦合度,提高可维护性与可扩展性,本文采用面向方面编程(AOP)的方式将性能跟踪功能从主要业务功能代码中剥离出来,以达到对WEB服务器程序非侵入的效果,即对业务开发人员完全透明。本文还采用字节码修改的方式来实现AOP功能,降低额外的性能开销。最后,给出了测试用例,验证了本框架的可用性。除了Servlet容器的性能跟踪之外,本框架对其他基于Java EE/J2EE架构的应用程序的性能跟踪也具有借鉴意义。

展开

【项目名称】:运用C++编程语言开发的视觉图像三维重构系统 【目标用户】:面向有意涉足跨技术领域学习的入门者及资深开发者。适合用作毕业设计课题、教学实践任务、大型作业、工业实训或初级科研项目启动。 【系统概述】: 本系统通过视觉图像数据实现三维物体的几何建模,其核心模块涵盖以下功能: - **基础架构**:集成工程所需的基础数据组织形式,涵盖影像资料、深度图谱、网格模型、视角参数等元素的存储交互机制。 - **数学运算库**:包含矩阵操作、矢量计算、四元数变换等数学工具,支撑几何计算需求。 - **特征处理单元**:支持SIFTSURF两类特征识别算法的提取匹配操作。 - **运动结构复原模块**:实现摄像机位姿推算、三维空间点三角定位及光束法平等关键技术。 - **多视角立体模块**:通过立体匹配算法生成高密度点云数据。 - **表面重建组件**:将离散点云转化为连续网格曲面。 - **纹理映射单元**:生成贴合模型表面的纹理贴图。 - **应用案例库**:提供典型应用场景的代码示范。 - **缓存目录**:用于暂存运算过程产生的临时文件。 系统以模块化架构确保各功能单元独立可拓展,适用于计算机视觉图形学领域的算法研究及工程实践。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值