二叉树查找python_Python 实现二叉查找树的示例代码

NODE_LIST = [

{'key': 60, 'left': 12, 'right': 90, 'is_root': True},

{'key': 12, 'left': 4, 'right': 41, 'is_root': False},

{'key': 4, 'left': 1, 'right': None, 'is_root': False},

{'key': 1, 'left': None, 'right': None, 'is_root': False},

{'key': 41, 'left': 29, 'right': None, 'is_root': False},

{'key': 29, 'left': 23, 'right': 37, 'is_root': False},

{'key': 23, 'left': None, 'right': None, 'is_root': False},

{'key': 37, 'left': None, 'right': None, 'is_root': False},

{'key': 90, 'left': 71, 'right': 100, 'is_root': False},

{'key': 71, 'left': None, 'right': 84, 'is_root': False},

{'key': 100, 'left': None, 'right': None, 'is_root': False},

{'key': 84, 'left': None, 'right': None, 'is_root': False},

]

class BSTNode(object):

def __init__(self, key, value, left=None, right=None):

self.key, self.value, self.left, self.right = key, value, left, right

class BST(object):

def __init__(self, root=None):

self.root = root

@classmethod

def build_from(cls, node_list):

cls.size = 0

key_to_node_dict = {}

for node_dict in node_list:

key = node_dict['key']

key_to_node_dict[key] = BSTNode(key, value=key) # 这里值和key一样的

for node_dict in node_list:

key = node_dict['key']

node = key_to_node_dict[key]

if node_dict['is_root']:

root = node

node.left = key_to_node_dict.get(node_dict['left'])

node.right = key_to_node_dict.get(node_dict['right'])

cls.size += 1

return cls(root)

def _bst_search(self, subtree, key):

"""

subtree.key小于key则去右子树找 因为 左子树

subtree.key大于key则去左子树找 因为 左子树

:param subtree:

:param key:

:return:

"""

if subtree is None:

return None

elif subtree.key < key:

self._bst_search(subtree.right, key)

elif subtree.key > key:

self._bst_search(subtree.left, key)

else:

return subtree

def get(self, key, default=None):

"""

查找树

:param key:

:param default:

:return:

"""

node = self._bst_search(self.root, key)

if node is None:

return default

else:

return node.value

def _bst_min_node(self, subtree):

"""

查找最小值的树

:param subtree:

:return:

"""

if subtree is None:

return None

elif subtree.left is None:

# 找到左子树的头

return subtree

else:

return self._bst_min_node(subtree.left)

def bst_min(self):

"""

获取最小树的value

:return:

"""

node = self._bst_min_node(self.root)

if node is None:

return None

else:

return node.value

def _bst_max_node(self, subtree):

"""

查找最大值的树

:param subtree:

:return:

"""

if subtree is None:

return None

elif subtree.right is None:

# 找到右子树的头

return subtree

else:

return self._bst_min_node(subtree.right)

def bst_max(self):

"""

获取最大树的value

:return:

"""

node = self._bst_max_node(self.root)

if node is None:

return None

else:

return node.value

def _bst_insert(self, subtree, key, value):

"""

二叉查找树插入

:param subtree:

:param key:

:param value:

:return:

"""

# 插入的节点一定是根节点,包括 root 为空的情况

if subtree is None:

subtree = BSTNode(key, value)

elif subtree.key > key:

subtree.left = self._bst_insert(subtree.left, key, value)

elif subtree.key < key:

subtree.right = self._bst_insert(subtree.right, key, value)

return subtree

def add(self, key, value):

# 先去查一下看节点是否已存在

node = self._bst_search(self.root, key)

if node is not None:

# 更新已经存在的 key

node.value = value

return False

else:

self.root = self._bst_insert(self.root, key, value)

self.size += 1

def _bst_remove(self, subtree, key):

"""

删除并返回根节点

:param subtree:

:param key:

:return:

"""

if subtree is None:

return None

elif subtree.key > key:

subtree.right = self._bst_remove(subtree.right, key)

return subtree

elif subtree.key < key:

subtree.left = self._bst_remove(subtree.left, key)

return subtree

else:

# 找到了需要删除的节点

# 要删除的节点是叶节点 返回 None 把其父亲指向它的指针置为 None

if subtree.left is None and subtree.right is None:

return None

# 要删除的节点有一个孩子

elif subtree.left is None or subtree.right is None:

# 返回它的孩子并让它的父亲指过去

if subtree.left is not None:

return subtree.left

else:

return subtree.right

else:

# 有两个孩子,寻找后继节点替换,并从待删节点的右子树中删除后继节点

# 后继节点是待删除节点的右孩子之后的最小节点

# 中(根)序得到的是一个排列好的列表 后继节点在待删除节点的后边

successor_node = self._bst_min_node(subtree.right)

# 用后继节点替换待删除节点即可保持二叉查找树的特性 左

subtree.key, subtree.value = successor_node.key, successor_node.value

# 从待删除节点的右子树中删除后继节点,并更新其删除后继节点后的右子树

subtree.right = self._bst_remove(subtree.right, successor_node.key)

return subtree

def remove(self, key):

assert key in self

self.size -= 1

return self._bst_remove(self.root, key)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值