首先明确数据分析是需要以自我需求为导向的,抛开目的推荐可视化工具都是刷流氓。
没有最好,只有最适合。
好,基于这一假设,开始基于目的性推荐个人比较喜欢的数据可视化工具。
0. 数据可视化工具推荐概要
我们来梳理一下需要用到数据可视化的分析,主要是以下两类场景:
- 常规型:指标监控型报表
- 临时型:个人探索性分析
1. 常规型:指标监控类报表
先来说指标监控类报表,这类数据可视化的目的在于可以及时的、准确的反映业务实际情况,给使用者提供数据支持以便达到:错误监控、现状了解、趋势预测等目的。分为商用、开源两类报表。
1.1 商用指标监控型报表
市面上主要有三类指标监控报表,这边每类会给到一个例子供大家了解。当然这边所谓的商业也不一定要付费,不多大多数情况下是要付费的。
- 数据库型图形化操作报表:Tableau
Tableau是各大外企在用的数据分析类报表工具,个人感觉主打的是:人人都会用的数据分析工具,通过简单的图形化操作(类似Excel)就可以得出自己想要的分析结果。
原理是通过连接公司数据库基于一定的SQL语法建立基本数据集,对数据集进行分析。这对数据集的完整性有很高的要求。
- 易用性:五颗星
![e1aba04d04b6805aaf62d2687456f08b.png](https://i-blog.csdnimg.cn/blog_migrate/eb9aa9c5b34340873ad84895d2c98e80.jpeg)
- 埋点型图形化操作报表:神策分析
说完数据可视化神器Tableau,让我们来看下国内主要在用的数据分析产品,这类产品主要有身材数据、GrowingIO、Google Analytics等。
这类产品基本上都是收费的,主要以在业务端埋点然后上传到数据库直接进行分析操作。只要能知道相关埋点和参数,也是可以做到人人都可以数据分析,直接上手图形化操作。
![01078d34d7de92eb176eb7fe257adef3.png](https://i-blog.csdnimg.cn/blog_migrate/db1d6186024ca47c598bb5174f38c1cd.jpeg)
- 编程式数据可视化报表:mode
这款软件是我至今为止见过自由度最大的数据可视化工具了,支持用R或者Python来进行图标的底层编写,自由度非常高。其他的开源数据分析工具大多只能以SQL为底层数据分析手段。
基本款免费,有付费版,因此将其放在商用这里。
![64cde3e0d580414094e137c9210d28f4.png](https://i-blog.csdnimg.cn/blog_migrate/de2c16814e8130fb9e787120ea2a3b7d.jpeg)
![224a28d835c582a0df43242751bca5da.png](https://i-blog.csdnimg.cn/blog_migrate/d6c388a2454908d85e345863913d2141.jpeg)
1.2 开源指标监控型报表
- SQL类数据可视化报表:matabase、grafana、superset
这三类就是之前说的以SQL为底层语言的数据可视化报表,可以自由编写整合所需要的报表字段进行报表输出,支持定时刷新和监控邮件提醒,是大部分互联网公司会用到的日常报表平台。
![fd68fd4f26ff0e9046c125a2970c8757.png](https://i-blog.csdnimg.cn/blog_migrate/f723ea7e88db65b586d9bdcce2921955.jpeg)
![65b064cd70c46b8ca525aff12f102aab.png](https://i-blog.csdnimg.cn/blog_migrate/f956df4e0de052d7a55e708aa9a2a070.jpeg)
![12ec8f4bd8b365123fd7388891733201.png](https://i-blog.csdnimg.cn/blog_migrate/fa4a757935a1f97040e09915223aa53f.jpeg)
- 工具类数据可视化报表:R、Python
为什么将这块单独拎出来?是因为R和Python有单独的第三方库可以支持数据可视化的报表制作。其中R的是ShinyDashboard、FlexDashboard,是我见过最好的可以做到数据完整数据报表的第三方库,支持菜单,自动刷新等,不过启动能量比较大,基本等于自己需要从头搭建Dashboard。
![f0f7e9ce21ba958664634a8508e70cc7.png](https://i-blog.csdnimg.cn/blog_migrate/9cc0fae5f9aa580e78f5990d95f920ec.jpeg)
Python的其中一个库就是superset,另一个比较麻烦叫做Dash,是Plotly的公司做的商业库,号称shiny of python
![b7d23f1fac17fe9041cf98068ab1890c.png](https://i-blog.csdnimg.cn/blog_migrate/78d286cb78888633d567070a28f512c0.jpeg)
2. 临时型:个人探索性分析
介绍完了Dashboard,我们回到问题的一开始,如果我只是想要临时进行数据探索分析,不想搭建Dashboard怎么办?这时候就必须要借助工具了,数据分析三大法宝:Excel、Python、R。
其中Excel就不多说了,纯图形化操作,临时需要数据分析其实完全可以使用Excel进行探索,方便快捷还不用写代码,写代码还是比较麻烦的。
于是我们来说Python和R,其实其他答主所谓的各种分析工具主要都是基于某种编程语言的第三方库来实现的,核心还是语言,库的挑选可以任意。
- Python
Python最基础的第三方图形化数据库是matplotlib和seaborn,这就不用我多说了,此外pandas自带的图像化也是可以一用。
![9e13f940f585dbdfc0a6915525d2637d.png](https://i-blog.csdnimg.cn/blog_migrate/a5ab7135e951ddc4f927cdc2439ca0de.jpeg)
- R
R由于是学术圈常用的数据分析工具,其中的第三方图形库实在太多,这边建议就看ggplot2就好了,ggplot2画图是真的真的好看!
![0128b016e5d273d0cbcd9ee0e6149d95.png](https://i-blog.csdnimg.cn/blog_migrate/4170fc020ce8c2548d7fbcd5609958be.jpeg)
- Plotly
这边把plotly单独拿出来,是因为plotly作为一个第三方库不仅支持Python还支持R,作为一个动态库还可以绘制出动态图形,并且可以在matplotlib、seaborn、pandas以及ggplot2上直接封装使用,是个人使用上非常喜欢的库。
![ba40dcb9136c32d15503768374f04864.png](https://i-blog.csdnimg.cn/blog_migrate/b8435ddd6ceef9c6ee4284c594174fbc.jpeg)
其他想要说的话:
· 如果觉得有帮助,朋友们可以点个赞收藏一下呀,如果真的用这套方法转岗数据分析师也欢迎在评论区回复呀!
· 最近在输出过去的一些积累,也想看看自己的积累帮助了多少朋友:)