本文转载自AI小白入门
Numpy(Numeric Python)是一个用python实现的科学计算的扩展程序库。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。
Numpy基本操作
import numpy
Numpy的数组(Array)
Numpy数组是一个由不同数值组成的网格, 网格中的数据都是同一种数据类型并且可以通过非负整型数的元组来访问。维度的多少被称为数组的阶,数组的大小是一个由整型数构成的元组,可以描述数组不同维度上的大小。
# 创建numpy数组
数组索引
Numpy提供了多种访问数组的方法。
import numpy
数据类型
每个Numpy数组的元素数据类型相同。创建数组的时候,Numpy会尝试猜测数组的数据类型,当然也可以通过参数直接指定数据类型。
import numpy
数组计算
基本数学计算函数会对数组中元素逐个进行计算,既可以利用操作符重载,也可以使用函数方式。
import numpy
广播机制(Broadcasting)
广播是一种强有力的机制,可以让不同大小的矩阵进行数学计算。我们常常会有一个小的矩阵和一个大的矩阵,然后我们会需要用小的矩阵对大的矩阵做一些计算。
# 把一个向量加到矩阵的每一行,可以这样做
# 广播机制例子
参考:
https://github.com/kuleshov/cs228-material/blob/master/tutorials/python/cs228-python-tutorial.ipynb