C++求复数的角度_【数列】浅谈“不动点”求数列通项的方法

其实“不动点”是一个非常有意思的概念,现在高考题一般不会涉及,但是我现在写的东西比较随心所欲~

这篇文章和竞赛书上的内容相比,介绍的东西相对比较简单。

一、不动点的概念与性质

对于函数

,若存在实数
,使得
,则称
是函数
的(一阶)不动点。

同样地,若

,则称
是函数
的二阶不动点。容易发现,对于一阶不动点
,有
,因此一阶不动点必然是二阶不动点。

在几何上,曲线

与曲线
的交点的横坐标即为函数
的不动点。

一般地,数列

的递推式可以由公式
给出,因此可以定义递推数列的不动点:对于递推数列
,若其递推式为
,且存在实数
,使得
,则称
是数列
的不动点。

数列的不动点有什么性质呢?若从某一项

开始,数列的取值即为
,也即
,则
,以此类推,根据数学归纳法,可以得到当
时,
,也即数列
之后“不动”了。

有时候,数列

中的值可能无法取到
,但是会“接近”
,也即收敛于
。所谓“收敛”是指当
充分大时,数列
趋向于某个值
,也即
,代入递推式即可得到

值得注意的是,不动点也可能不存在(或者说为复数)。文章的最后将会给出一个非常有意思的例子。

二、一阶线性递推数列

所谓“一阶线性递推数列”非常常见,是指下面的这种数列:若数列

满足
,其中
是给定的实数,求数列
的通项公式。

一般来说,当

时,原数列即为公差为
的等差数列,故

时,我们可以通过待定系数法构造一个公比为
的等比数列:假设存在实数
,使得
,展开得到
,解得

因此数列

是等比数列,累乘得
,移项后即可得到通项公式为
,其中

事实上,上面得到的

非常特殊:可以发现
满足方程
,也即
是数列
的不动点。这便可以给我们启发:形如
的递推数列,在处理的时候可以分以下两种情况:

(1)

,可以求出它的不动点
,之后
为等比数列;

(2)

,此时不动点不存在,
是等差数列。

并且由上面的例子得到启发,在数列的递推式两边减去不动点,可以得到较为特殊的结构。

接下来来看一个比较简单的例子:

例1 设数列

满足
,求数列
的通项公式。

,解得不动点
,因此变形得到

也即

是等比数列,且
,累乘得
,因此

由此看来,不动点法虽然可以说是“花里胡哨”的方法,但是在解决问题时比待定系数法直接得多。

三、分式递推数列

接下来我们来看分式递推数列,这也是不动点法主要应用的范围。所谓分式递推数列是指以下类型:若数列

满足
,其中
是给定的实数,求数列
的通项公式。

这时候要求它的不动点,考虑方程

,得到了一个二次方程!情况就比上面的题目复杂得多了。我们从几个例子出发:

例2 设数列

满足
,求数列
的通项公式。

考虑方程

,故
是数列
的不动点,根据上面的思路,尝试在递推式两边同时减去
,得到

注意到左右两边分别出现了

这样相似的结构,并且都是在分母,我们可以尝试构造新数列
,当然也可以直接变形:

也即

,因此数列
是首项为
,公差为
的等差数列,累加得
,因此

例3 设数列

满足
,求数列
的通项公式。

同样地,考虑方程

,这时候数列
有两个不动点
,分别在递推式两边减去
后,可以得到:

两式相除得

,因此数列
是首项为
,公比为
的等比数列,累乘得
,因此

做一个小小的总结:形如

的递推数列,处理时也可以分两种情况:

(1)若其有一个不动点

,则
是等差数列;

(2)若其有两个不动点

,则
是等比数列。

当然,分式递推数列不只有上面那种简单的情况,可以看下面这个例子:

例4 设数列

满足
,求数列
的通项公式。

事实上,

,这不同于上面的类型,但是否可以用同样的方法处理呢?

同样尝试求它的不动点:

,因此
是数列
的两个不动点,变形得到:

两式相除得

,又
,迭代得到
,由此解得数列的通项公式

由此看来,对于比较复杂的分式型递推数列,也可以通过减去不动点来进行代数变形,从而使等式的两边出现类似的结构,更易于处理。

四、没有不动点的情况?

其实我觉得吧,这里才是这篇文章比较精彩的地方。这就是我在开头讲的,比较有意思的不动点不存在的情况。

例5 设数列

满足
,求数列
的通项公式。

考虑方程

这时候数列的不动点不存在!

但将不动点扩展到复数域内,可以得到

是数列
的两个不动点,接下来根据复数的四则运算,我们看看能得到上面结果:

两式相除得

,又
,迭代得
,由此解得
,并且根据上面的递推公式可以知道,
数列的通项公式虽然由复数给出,但是每一项都是实数。

当然,这道题目还有一种比较漂亮的做法:注意到

,根据
变形即可得到

因此作换元

,整理得到
,因此
是等比数列,又根据
得到
,故
,因此

通过这个例子也可以看出“三角复数不分家”。

经 @寒蝉凄切 提醒,当不动点是复数的时候,数列必定是周期数列,例如上面的这个例子。

说到这个,才想起一个新的例子:

例6 设数列

满足
,求数列
的通项公式。

其中

,因此数列以
为周期。

考虑方程

,此时数列也没有不动点(或者说不动点为复数)。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值