matlab复数信号_信号之间的时延估计(续)

本文详细探讨了GCC-PHAT(Generalized Cross-Correlation with Phase Transform)在复数信号时延估计中的应用。作者指出了上一篇文档中关于GCC理解的错误,明确了GCC-PHAT的理论基础,包括频域法CC和GCC-PHAT的原理。通过仿真结果展示了GCC-PHAT在不同信噪比下对时延估计的性能,并分析了采样率、降噪处理对时延精度的影响。作者还提出预滤波可以提高信噪比,但必须确保对两路信号处理一致,以避免影响相对时延关系。
摘要由CSDN通过智能技术生成

98b114cca84a72ccadf40e72a5e9ad23.png

说明

这篇文章是之前《信号之间的时延估计》的续篇,中间隔了很长时间才写这一篇,是因为期间一直有其它事情要做,而且感觉对GCC的一些关键点还没有考虑清楚。后来评论区一位朋友在关心续篇的进度,我就不得不抓紧时间好好思考一下了哈哈。因此最终写了这一篇作为上一篇的修正以及补充。
PS:这篇文章内容较多,能把这么枯燥的内容看完也不容易。
xiaoli1368:信号之间的时延估计​zhuanlan.zhihu.com
26a3284cd4050a8e4161696ec385432d.png

1. 上一篇的错误

经过更加深入的思考后,这里首先指出,以前的一些“想当然”的看法明显是错误的。我在上一篇文档中关于GCC的理解部分写到:

其实, 信号进行了PHAT加权后,实质上相当于进行了白化滤波,倘若信号转换为了理想的白噪声形式,则时域中必然会在零延时处出现冲激,这是由傅里叶变换决定的。然而仅进行了幅度上的归一化尚且不能认为是理想的白化,被保留的相位信息仍占据主导因素,因此会在准确的时延处产生更大的冲激。 因此两路具有确定延时关系的信号在进行GCC-PHAT后会获得两个冲激峰值。如果两路信号不具备延时关系,则它们的相关性很小,因此进行PHAT加权而产生的频谱更加趋向于理想白噪声,因此它们的时域结果也趋向于在零时延处产生较大峰值。

这种说法是错误的,即便在频域进行了白化滤波,事实上也不会在0时延处产生同样的冲激。错误的原因在于,我将功率谱和自相关,以及频谱与时延这两对关系弄混了

对一个信号进行分析时,首先应该明确该信号属于确定信号还是不确定信号(随机信号)。而噪声则比较特殊,一般将其作为随机信号并使用统计的规律来进行分析,此时噪声的功率谱和自相关是互为傅里叶变换的,并且对于白噪声而言,其功率谱是常数,此时的自相关函数会在0时延处产生一个冲激。而将其作为确定信号进行分析的时候,可以发现白噪声的频谱的成分十分混杂,反变换到时域也是十分混杂的噪声形式

事实上,对于一个确定的信号的频谱,对幅度进行归一化确实是白化的一个步骤,但是不能等价于“白化”。此时该信号在时域能否产生冲激,是由信号相位谱之间的关系决定的。事实上,只有确定的线性相位才会在时域产生对应的冲激,这一点是由傅里叶变换决定的。即

变换为
,当时延
为常数的时候,频域上的复指数信号
是典型的
“幅度归一化+线性相位”的形式。

而对于几乎没有确定的线性相位的频谱形式,可以认为由很多个线性相位叠加而成,因此时域上也就会出现十分混杂的冲激,具体的理论推导见第二部分。

以下是直接从频域生成白噪声并观察其时域波形:

testSignal 

ca5543b8fc7bb8155550a41440747503.png
Fig 1. 白噪声频谱的时域波形

2. GCC-PHAT的理论推导

首先,应当明确“使用GCC-PHAT来计算时延”的出发点如下:

  1. 传统的时域互相关法,计算量较大且运算时间慢。
  2. 使用频域法来计算互相关(CC)十分经典,但是不能满足更高的要求。
  3. 在频域法CC的基础上,对互功率进行“系数加权”,由此产生了一系列的广义互相关法(GCC)
  4. 在GCC中,控制加权函数以进行相位加权可以对输出结果进行锐化,这便是GCC-PHAT
  5. GCC-PHAT常与SRP-PHAT结合并应用到目标定位中去。

2.1 频域法CC

先分析经典的频域法求解CC,首先对信号进行建模,这里直接考虑的是含噪模型,目标发射信号

,两路接收信号分别为:

为了表达方便,其实可以将第一路信号

作为参考信号,直接将第二路信号表示为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值