- 博客(243)
- 收藏
- 关注
原创 基于改进TLS-ESPRIT的旋转机械故障诊断方法(MATLAB)
采用一种改进的TLS-ESPRIT方法对旋转机械进行故障诊断,该算法不依赖于信号子空间与噪声子空间的差异即可准确识别信号中的频率分量,在谐波幅值较小以及不同噪声干扰下均表现出较好的性能,不仅借助TLS-ESPRIT 算法弥补了FFT 算法频谱分辨率的不足,同时还可提前计算出频谱中真实频率对应的频谱位置。
2024-06-21 10:44:35 615
原创 可解释机器学习之SHAP方法
可解释机器学习之SHAP方法以Breast cancer wisconsin (diagnostic) dataset数据集为例。
2024-06-19 06:29:22 511
原创 简单的基于自编码器的心电信号异常检测(tensorflow,keras)
简单的基于自编码器的心电信号异常检测(tensorflow,keras)
2024-06-18 06:12:34 512
原创 基于自编码器的心电图信号异常检测(Python)
使用的数据集来自PTB心电图数据库,包括14552个心电图记录,包括两类:正常心跳和异常心跳,采样频率为125Hz。
2024-06-17 15:56:35 1100
原创 简单的基于小波变换的图像压缩(Python)
多贝西教授在小波理论和调和分析领域做出了重大贡献,她的研究彻底改变了图像和信号的数字处理方式,为数据压缩提供了标准和灵活的算法。多贝西的研究成果带来了多个领域技术的创新,包括医学成像、无线通信,和数字电影,比如:她早期的研究成果被用于图像压缩,JPEG 2000格式图片就是通过Daubechies小波压缩而成,它们也被用于将声音序列压缩成 MP3 文件;在更近的一些应用领域中,它们被用于增强和重建哈勃望远镜早期的图像,检测伪造的文件和指纹等等。
2024-06-16 10:34:07 443 1
原创 Unet心电信号分割方法(Pytorch)
心血管疾病是一种常见病,严重影响人们的健康及日常生活。近年来随着人们生活习惯的不断变化,心血管疾病对人们影响愈加明显,发病率呈现出逐年攀升的趋势,心血管疾病是中国城乡居民死亡的首要原因。心电图ECG已被广泛用于研究心跳活动。作为一种无创的方法,ECG的相关研究为了解心脏的功能提供了便利。对心电图进行有效分析可以为心血管疾病的诊断和防治提供丰富的信息,进而大大减缓心血管疾病对人们生活的影响。心电信号分割是心电图解读的第一步,通过心电信号分割,有助于进一步对运动员心脏健康状况进行分析,进而减少运动员受伤、
2024-06-15 06:22:58 536
原创 基于机器学习的C-MAPSS涡扇发动机RUL预测
美国国家航空航天局的商用模块化航空推进仿真系统(CMAPSS)所模拟出的涡扇发动机性能退化数据进行实验验证,数据中包含有风扇、涡轮、压气机等组件参数。C-MAPSS中所包含的数据集可以模拟出从海平面到42千英尺的高度,从0到0.9马赫的速度以及从60到100的油门杆角度。同时在每次循环的某一时间点开始会设置指定故障,并且故障在剩余循环继续存在,从而可以确定故障出现在哪一时刻,所以该数据集被普遍用作预测涡扇发动机RUL问题的基准数据集。
2024-06-14 17:11:23 1239
原创 简单的基于Transformer的滚动轴承故障诊断(Pytorch)
递归神经网络在很长一段时间内是序列转换任务的主导模型,其固有的序列本质阻碍了并行计算。因此,在2017年,谷歌的研究人员提出了一种新的用于序列转换任务的模型架构Transformer,它完全基于注意力机制建立输入与输出之间的全局依赖关系。在训练阶段,Transformer可以并行计算,大大减小了模型训练难度,提高了模型训练效率。Transformer由编码器和解码器两部分构成。其编解码器的子模块为多头注意力MHA和前馈神经网络FFN。此外,Transformer还利用了位置编码、层归一化、残差连接、drop
2024-06-13 08:03:54 771
原创 基于深度学习的电池健康状态预测(Python)
电池的故障预测和健康管理PHM是为了保障设备或系统的稳定运行,提供参考的电池健康管理信息,从而提醒决策者及时更换电源设备。不难发现,PHM的核心问题就是确定电池的健康状态,并预测电池剩余使用寿命。但是锂电池的退化过程影响因素众多,不仅受其本身工作模式的影响,外部环境的压力、温度等都会影响锂电池的退化。这些影响因素之间的相互耦合,导致锂电池的退化表现出很强的非线性及不确定性,这给SOH估计和RUL预测带来了很大的困难。
2024-06-12 11:15:08 1184 2
原创 C-MAPSS数据集探索性分析
实验数据为商用模块化航空推进系统仿真C-MAPSS数据集,该数据集为NASA格林中心为2008年第一届预测与健康管理国际会议(PHM08)竞赛提供的引擎性能退化模拟数据集,数据集整体信息如下所示.
2024-06-10 17:01:21 1576
原创 基于学习模型的可学习小波变换方法(Pytorch)
为了简化,采用一种基于学习模型的可学习小波变换方法。采用Pytorch深度学习模块,执行基于深度学习模型的可学习小波包变换和基于深度学习模型的离散小波变换框架,能够从数据中自动进行学习并根据目标函数进行优化。
2024-06-09 10:42:54 757
原创 一维时间序列信号的基于小波集的时频超分辨率分析方法(Python)
由于小波变换只能反映信号的零维奇异性,即只能表达奇异点的位置和特性。事实上具有线奇异的函数在高维空间中非常普遍,例如,自然物体光滑边界使得自然图像的不连续性往往体现为光滑曲线上的奇异性,而并不仅仅是点奇异。对于一个二阶可导的光滑曲线奇异函数,小波非线性逼近的误差衰减级较小,其重要的原因是二维可分离小波基只具有有限的方向,即水平、垂直、对角、方向性的缺乏使得小波并不能充分利用图像本身的几何正则性。小波在表示这些函数时并不是最优的或者最稀疏的表示方法。
2024-06-04 12:23:10 392
原创 基于小波区间相关的信号降噪方法(MATLAB 2021B)
采用基于小波区间相关的信号降噪方法对非平稳信号进行降噪,运行环境为MATLAB 2021B,使用与区间相关的阈值对信号进行降噪,包括使用最小阈值对全区间进行降噪,使用最大阈值对全区间进行降噪,手动选择3个阈值对3个区间进行降噪等。
2024-06-03 15:09:44 514
原创 一维时间序列信号的广义傅里叶族变换(Matlab)
广义傅里叶族变换是一种时频变换方法,傅里叶变换、短时傅里叶变换、S变换和许多小波变换都是其特殊情况
2024-05-31 16:41:22 310
原创 简单的利用有限脉冲响应(FIR)滤波器对心电信号进行降噪(Python)
简单的利用有限脉冲响应(FIR)滤波器对心电信号进行降噪(Python)
2024-05-27 11:12:44 343
原创 基于信号分解方法的机械故障诊断方法存在的问题
在传动系统信号分解中,信号分量检测问题尤其是含偏差频率分量检测问题没有受到足够的重视。上述两大挑战分别制约了信号分解的精度及物理可解释性,进而限制了其在传动系统信号特征提取中的有效应用。
2024-05-26 20:23:00 438
原创 基于机器学习的车辆状态异常检测
基于马氏距离的车辆状态异常检测(单一传感器)基于多元自动编码器的车辆状态异常检测基于单传感器平滑马氏距离的车辆状态异常检测
2024-04-20 17:06:44 993
原创 谱重排变换和同步压缩变换的区别是什么?
谱重排方法能够得到非常高的时频分辨率,但是同样也存在一个问题,不能重构原始信号,2011 年 Daubechies 提出了一种基于相位的高分辨率时频分析方法—同步压缩小波变换,该方法也是一种谱重排的方法,能使非平稳非线性信号在时频域高度聚焦,与传统谱重排不同的是,同步压缩小波变换能够重构原始信号。
2024-04-07 12:38:28 232
原创 关于交叉小波变换
小波变换可以很好的在时频域中分析单个信号的瞬态和突变等时变特性,交叉小波变换是在小波变换的基础上提出的, 主要用来处理两个信号之间的相关程度。传统的互相关分析方法, 是通过傅里叶变换将信号从时域上转换到频域上,然后在频域上解析数据之间的相关性, 而且主要针对平稳信号开展分析, 在面对非平稳信号时, 分析效果则不尽如人意。与之不同,交叉小波变换主要是同时在时域和频域上分析两个非平稳信号之间的相关性, 比频域上相关分析, 能提供更为丰富的特征信息。
2024-04-07 11:24:07 761
原创 Python环境下基于离散小波变换的信号降噪方法
Mallat创造了小波分析中的经典理论之一,即多分辨率分析的概念。后来,在Mallat与Meyer的共同努力之下,他们又在这一理论的基础上发明了离散小波变换的快速算法,这就是Mallat塔式算法,这种算法可以大量减少计算时间。在之前的二十年之间,小波分析方法在自身不断发展壮大的同时,也被许多学者在信号降噪领域进行了普及与应用。以Mallat为代表的一系列学者提出了模极大值重构滤波方法。这一方法的原理是:信号与噪声的小波系数在变换尺度变化的情况下,Lipschitz指数会呈现出不同的变化特点,以此来分辨信号与
2024-04-04 20:54:41 1494
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人