自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(248)
  • 收藏
  • 关注

原创 基于机器学习的车辆状态异常检测

基于马氏距离的车辆状态异常检测(单一传感器)基于多元自动编码器的车辆状态异常检测基于单传感器平滑马氏距离的车辆状态异常检测

2024-04-20 17:06:44 229

原创 有趣的MEEG信号时频分析方法

有趣的MEEG信号时频分析方法

2024-04-19 08:14:37 92

原创 基于瞬时频率的语言信号清/浊音判决和高音检测(MATLAB R2021)

语音是由气流激励声道从嘴唇或鼻孔辐射出来而产生的。根据声带是否振动,发音可分为浊音和清音。浊音和清音有明显的区别,浊音具有周期信号的特征,而清音则具有随机噪声的特征;浊音在频域上具有共振峰结构,其能量主要集中在低频带,清音的振幅值相对较小,在时域和频域没有明显的规律性。清音和浊音的正确判断在语音识别、语音合成、语音编码中具有重要作用。传统的清浊音区分方法有:短时能量法、短时自相关函数法和过零点法等。由于实际语音常有连读以及单音素发音过短的情况,现有的清浊音判断方法也会出现判断不准确的情况。

2024-04-18 14:46:57 586

原创 MATLAB环境下基于同步压缩变换重分配算子的瞬时频率估计

瞬时频率是表征非平稳信号特征的重要物理量,已经被广泛应用于桥梁振动检测、地震勘测、机械、电力系统、雷达、通信、医学等各个方面。瞬时频率的概念最早由Carson提出,后来,Gabor提出解析信号的定义,为瞬时频率的研究提供了新的方向,最后,Ville综合前人研究成果,给出了基于解析信号的瞬时频率的概念,即利用Hilebrt变换得到解析信号,再通过解析信号的相位对时间求导可得信号的瞬时频率。

2024-04-18 10:01:49 469

原创 MATLAB环境下基于随机期望最大化的多分量信号瞬时频率估计方法

鉴于此,提出一种基于随机期望最大化的多分量信号瞬时频率估计方法,该方法引入了一种新的观测模型估计多分量信号模态的瞬时频率,采用贝叶斯框架估计瞬态频率,使用混合模型来考虑信号分量和分布噪声,并使先验模型与参数相关联,以建模可用的先验知识,然后通过随机期望最大化算法制定一种自适应的估计策略。该方法可作为深度学习通用信号识别的前处理过程,可用于论文创新。

2024-04-17 19:14:40 348

原创 一维时间序列信号的迭代非线性模态分解方法(Python语言)

模态分解是一类经典的信号处理方法,通过将一个完整信号分解为若干分量,筛选出一个或多个有意义的模态并进行信号重构,起到去除多余噪声、突出信号中有意义成分的作用。

2024-04-16 13:26:33 481

原创 Python环境下基于动态模态分解的股票价格预测

动态模态分解模型的基本思想是直接从数据模拟得到的流场中提取流动的动态信息,根据不同频率的流场变动寻找数据映射,基于动态非线性无穷维转化成动态线性有穷维的方式,采用了Arnoldi 方法以及奇异值分解SVD降维的思想,借鉴了ARIMA、SARIMA 以及季节模型等许多时间序列的关键特征,被广泛的使用在数学、物理、金融等领域。

2024-04-16 08:08:47 302

原创 关于机器学习/深度学习的一些事-答知乎问(六)

关于机器学习/深度学习的一些事-答知乎问(六)

2024-04-15 10:02:58 711

原创 关于机器学习/深度学习的一些事-答知乎问(五)

关于机器学习/深度学习的一些事-答知乎问(五)

2024-04-15 09:45:52 1044

原创 关于机器学习/深度学习的一些事-答知乎问(四)

关于机器学习/深度学习的一些事-答知乎问(四)

2024-04-15 09:27:21 1128

原创 关于时频分析与机械故障诊断的一些事-答知乎问(二)

关于时频分析与机械故障诊断的一些事-答知乎问(二)

2024-04-14 17:51:48 1012

原创 关于机器学习/深度学习的一些事-答知乎问(三)

关于机器学习/深度学习的一些事-答知乎问(三)

2024-04-14 17:28:37 1264

原创 关于机器学习/深度学习的一些事-答知乎问(二)

关于机器学习/深度学习的一些事-答知乎问(二)

2024-04-14 14:02:02 924

原创 关于时频分析的一些事-答知乎问(一)

关于时频分析的一些事-答知乎问(一)

2024-04-14 12:09:02 936

原创 关于机器学习/深度学习的一些事-答知乎问(一)

关于机器学习/深度学习的一些事-答知乎问(一)

2024-04-14 10:46:00 821

原创 关于故障诊断的一些事-答知乎问(四)

关于故障诊断的一些事-答知乎问(四)

2024-04-13 21:59:19 1156

原创 关于故障诊断的一些事-答知乎问(三)

在处理时变非平稳信号时,大多数分解方法得到的信号分量的数目通常大于实际关注的特征分量的数目(即分解结果不稀疏),这些分量中甚至包括与真实信号特征毫不相关的虚假分量。因此,某些重要的故障特征往往被分散到多个信号分量中,导致机械故障不能被及时发现。

2024-04-13 21:57:50 928

原创 关于故障诊断的一些事-答知乎问(二)

传统方法只从信号离散点中提取特征信息,忽略了离散点间关系所包含的信息。通过在图上定义信号,则可将信号从一般数据域转换到图域,从而利用图来反映原始信号的局部性关系。在图域中,信号的数据结构可以提供额外的输入信息,不仅包括对应于图中顶点的信号离散点函数值,还包括顶点间的关系。

2024-04-13 21:55:47 870

原创 关于故障诊断的一些事-答知乎问(一)

STFT得到的时频矩阵没有交叉项的干扰,但时频聚集性无法兼得;而WVD恰恰相反,其时频矩阵 能兼顾时频聚集性,但对多分量信号进行处理会产生交叉项。 为获得时频聚集性良好的时频矩阵,可以对STFT和WVD进行时频融合。

2024-04-13 21:53:31 858

原创 谱重排变换和同步压缩变换的区别是什么?

谱重排方法能够得到非常高的时频分辨率,但是同样也存在一个问题,不能重构原始信号,2011 年 Daubechies 提出了一种基于相位的高分辨率时频分析方法—同步压缩小波变换,该方法也是一种谱重排的方法,能使非平稳非线性信号在时频域高度聚焦,与传统谱重排不同的是,同步压缩小波变换能够重构原始信号。

2024-04-07 12:38:28 157

原创 关于交叉小波变换

小波变换可以很好的在时频域中分析单个信号的瞬态和突变等时变特性,交叉小波变换是在小波变换的基础上提出的, 主要用来处理两个信号之间的相关程度。传统的互相关分析方法, 是通过傅里叶变换将信号从时域上转换到频域上,然后在频域上解析数据之间的相关性, 而且主要针对平稳信号开展分析, 在面对非平稳信号时, 分析效果则不尽如人意。与之不同,交叉小波变换主要是同时在时域和频域上分析两个非平稳信号之间的相关性, 比频域上相关分析, 能提供更为丰富的特征信息。

2024-04-07 11:24:07 540

原创 Python环境下基于离散小波变换的信号降噪方法

Mallat创造了小波分析中的经典理论之一,即多分辨率分析的概念。后来,在Mallat与Meyer的共同努力之下,他们又在这一理论的基础上发明了离散小波变换的快速算法,这就是Mallat塔式算法,这种算法可以大量减少计算时间。在之前的二十年之间,小波分析方法在自身不断发展壮大的同时,也被许多学者在信号降噪领域进行了普及与应用。以Mallat为代表的一系列学者提出了模极大值重构滤波方法。这一方法的原理是:信号与噪声的小波系数在变换尺度变化的情况下,Lipschitz指数会呈现出不同的变化特点,以此来分辨信号与

2024-04-04 20:54:41 1033

原创 在深度学习模型中引入先验

当面对复杂问题的时候,在深度学习模型提取特征的过程中完全抛弃知识是非常不明智的策略。虽然有很多研究者在深度网络处理数据之前,利用具有某种知识的模型驱动方法对数据进行预处理,但是这种方法没有进行实质性地改造深度网络,且这种两阶段方法从端到端学习策略来看很难达到最优。

2024-04-04 17:50:50 533

原创 小波降噪基础-python版本

这篇小文将使用小波多分辨分析对一个简单信号进行降噪,主要是降噪流程,为以后的小波更复杂的降噪算法打下良好的基础。降噪算法流程大致如下.

2024-04-04 13:23:10 464

原创 Python环境下基于小波包和随机森林的uOttawa轴承数据集分类

本文采用小波包分解和随机森林分类器对uOttawa轴承数据集进行分类,比较简单,直接看代码就可以看懂,并可迁移至其他的一维数据集,比如心电信号,肌电信号,脑电信号,微振信号,各种声信号等等,顺便把python学一下,结合自己的领域学python能有效避免劝退。

2024-04-04 11:34:04 349

原创 一维卷积神经网络的特征可视化

随着AI应用渗透到各行各业,AI的科技伦理受到广泛的关注。而科技伦理的一个核心议题就是可解释人工智能XAI。从社会科学角度,可解释性是指人对决策原因的理解程度,可解释性越高,人就越能理解为什么做出这样的决策。对应于AI领域,可解释性是指能够在一定程度上揭示AI模型内部工作机制和对模型结果的进行解释,帮助用户理解模型是如何做出预测或决策的。

2024-04-02 17:49:47 688

原创 Python环境下基于小波分析的Linear电磁谱降噪

小波变换以其良好的时频局部化特性,成功地解决了保护信号局部性和抑制噪声之间的矛盾,因此小波技术在信号降噪中得到了广泛的研究,并获得了非常好的应用效果。小波降噪中最常用的方法是小波阈值降噪。基于小波变换的阈值降噪关键是要解决两个问题:阈值的选取和阈值函数的确定,目前常用的阈值选取原则有以下四种:通用阈值(sqtwolog原则)、Stein无偏似然估计阈值(rigrsure原则)、启发式阈值(heursure原则)、极大极小阈值(minimaxi原则)。

2024-04-02 07:14:54 570

原创 深度学习论文中结构A+B效果很好,怎么讲故事写成一篇优质的论文?

深度学习论文中结构A+B效果很好,怎么讲故事写成一篇优质的论文?

2024-03-31 08:21:41 234

原创 关于压缩感知与深度学习

传统的压缩感知重建方法基于稀疏先验知识,通过解一个最优化问题,迭代地重建原始信号。这类方法存在两个主要问题:(1)自然图像等真实信号在变换域中并不精确满足稀疏性,而是可压缩信号,仅由稀疏性建模的重建算法应用于真实信号时重建精度下降。(2)由于重建算法采用多次迭代求解原信号,难以实现实时性,限制了压缩感知技术的应用广度和深度。

2024-03-30 11:26:00 324

原创 Python环境下基于慢特征分析SFA的过程监控(TE数据)

因为工业过程一般是闭环控制,在控制器的补偿作用下,被控变量的变化速度一般小于不被控的环境噪声,因此SFA提取出的慢特征可以体现出系统的潜在变化趋势。SFA方法最初被应用于生物信号处理和图片处理中,并且在盲源信号分离领域也展现出较好的效果。

2024-03-30 09:33:51 416

原创 Python环境下一种改进小波分解方法-用于多分量信号的分解

鉴于此,提出一种改进的小波分解方法,可用于多分量信号的分解,该改进方法采用小波包把一个信号分解成一系列的分量,并对模态分量进行聚类,通过合成信号实例验证了该算法的有效性,运行环境为Python。

2024-03-30 08:46:15 558

原创 Python环境下基于小波变换和机器学习的地震信号处理和识别

Python环境下基于小波变换和机器学习的地震信号处理和识别

2024-03-30 05:28:56 512

原创 Python环境下基于机器学习的空压机故障识别(出口阀泄漏等)

本项目使用声信号检测空压机的 7 种故障,分别为出口阀泄漏Leakage Outlet Valve(LOV),入口阀泄露Leakage Inlet Valve(LIV),止逆阀泄露Non-Return Valve(NRV),轴承损伤Bearing,惯性轮损伤Flywheel,活塞损伤Piston,皮带损伤Riderbelt和健康状态。经过特征提取后,利用各种机器学习算法对空压机故障进行分类。

2024-03-29 16:55:51 1213

原创 Python环境下基于深度学习的旋转机械故障诊断及其权重可视化

神经网络的特征层可视化是一个新兴的科学研究领域,虽然无法完全“打开”这个“黑箱”,但是仍然出现了很多探索这个“黑箱”的尝试工作。神经网络的可视化研究,具体来说是对神经网络所提取的特征的可视化研究,不仅有助于理解网络内部结构的工作机制,而且对神经网络在其他应用上的研究也具有指导意义,避免了盲目的调参或试错。

2024-03-29 12:03:57 639

原创 Python环境下基于原型网络的滚动轴承故障诊断方法

原型网络是一种基于度量学习的小样本学习方法。该方法旨在学习各类样本在一个度量空间的原型表示,通过比较查询样本与各类原型之间的距离,将查询样本归入距离最近的类别,从而达到分类的目的。

2024-03-28 10:07:07 825

原创 Python环境下基于关系网络的滚动轴承故障诊断方法

关系网络(RelationNetwork)具有与关系推理相适应的结构,能够较好地把握其中的关键。人工智能行为的一个基本概念就是能够对实体之间的关系进行推理。关系网络最初用于小样本条件下的图像分类, 与传统深度神经网络需要大量样本训练不同, 该网络能在少量训练样本情况下, 取得较好的图像分类结果。关系网络 包含嵌入模块和关系模块, 是一种端到端的结构。嵌入模块用来提取输入样本的特征; 关系模块用来度量两个特征之间的相似性, 得到关系得分。

2024-03-28 08:20:26 600

原创 Python环境下一种新的类谱峭度算法的旋转机械故障诊断模型

Antoni大佬在2016年将熵的概念引入到对Kurtogram算法的改进中,综合考虑振动信号序列中存在的冲击成分和周期性成分,提出了众多改进算法,基于Antoni变革性的理论基础,众多学者展开了对谱峭度算法的改进。比如利用多尺度聚类方法,将两个负熵进行灰度组合,同时考虑时域和频域的谱负熵,同时兼顾了信号序列中的冲击成分和周期成分。

2024-03-27 22:50:31 682

原创 Python环境下5种TE过程(Tennessee Eastman Process)故障检测方法

Python环境下5种TE过程(Tennessee Eastman Process)故障检测方法

2024-03-26 16:38:19 653

原创 Python环境下滚动轴承状态监测与故障诊断(NASA IMS轴承数据集)

Python环境下滚动轴承状态监测与故障诊断(NASA IMS轴承数据集)

2024-03-26 11:45:25 1016

原创 Python环境下基于机器学习和深度学习的轴承故障诊断方法

基于深度学习的故障诊断方法通过高质量的故障数据集来训练算法模型,通过各层网络间的权重以及偏置来拟合故障数据模型,最后通过损失函数不断强化算法模型对数据分布规律的感知以及学习能力,从而创建出高效、准确的故障识别模型。与基于传统信号分析的故障诊断方法相比,深度学习模型效率以及准确率更高。

2024-03-26 09:05:57 486

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除