matlab利用形态学平滑方法进行去噪_Matlab数字信号处理

本文介绍了如何使用MATLAB进行数字信号处理,特别是针对高斯噪声的去噪方法。通过均值滤波和平滑处理,结合离散傅里叶变换,探讨了信号恢复的有效策略。同时,讨论了傅里叶变换在去噪过程中的局限性,并对比了硬阈值和软阈值算法的效果。
摘要由CSDN通过智能技术生成

一、函数信息与数字信号

数字信号区别与传统的函数信息的最大特点,就是其离散性,即数字信号的自变量与返回值都是离散定义的。例如,一个声音数字信号,一定有一个每秒若干次的采样,每一个时间段,声音的强度也将有一个固定精度的取值。

信号的数字化一般需要三个步骤:抽样、量化、编码

  • 一维的数字信号有时可能是波形信号,这样的信号通过拟合、插值,往往代表这一种具有光滑性与周期性的函数。
  • 一维的数字信号也有可能是声音信号,这样的信号往往会具有多种频段的信息,对应的连续函数的傅里叶变换也将在部分区段或点位出现明显更大的系数。
  • 一维的数字信号还有可能是分片光滑函数或分片常函数,也有可能是符合某种特定分布的随机函数。

二、信噪比

衡量误差大小的方法有很多,一种方式就是图示+观察,较 为直观可靠度也比较高。统计一致误差(最大误差)也是 一种衡量噪声强度的方法。

  • 相较来说,整体平方误差 (SE) 或平均平方误 差(MSE-mean square error ) 被更多采用。
  • 另一种基于平方误差的噪声强度的定义为信噪比 (SNRsignal to noise ratio) 此值与真实信号的性质有关。在相同真实信号的情况下,信噪比越高,信号质量越高。MATLAB函数调用方法snr (s, n), s 为信号, n为误差。

在已知噪声的分布类型与相应参数的情况下,直接以将这些噪声特性作为噪声强弱的度量,很多时候会更加可靠。而信噪比可以作为一种衡量去噪或恢复质量的有效尺度。

例:正弦函数加噪声计算信噪比:

x = 0:0.001:2*pi;
f = sin(x);
f_ = f + normrnd(0, 0.1, 1, length
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值