《统计学习方法》第二版 -- 第二章 感知机

Perceptron是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1 和 -1.

感知机对应于输入空间(特征空间)中将实例划为正负两类的分离超平面,属于判别模型

是神经网络与支持向量机的基础

2.1 感知机模型

&f(x) = sign(w\cdot x+b)\\ &sign(x) = \left\{\begin{aligned} +1 & , & x\geq 0 \\ -1 & , & x < 0 \\ \end{aligned}

w和b属于感知机模型参数,w\in{R^n}叫做权值或者权值向量,b\in{R}叫做偏置,w\cdot x表示两者的内积,sign是符号函数。

线性分类模型 属于判别模型

假设空间定义在特征空间中的所有线性分类模型或线性分类起,即函数集合\{f|f(x) = w\cdot x + b\}

线性方程: w\cdot x + b = 0 对应于特征空间R^n中的一个超平面S, w为超平面的法向量,b为超平面的截距。平面将特征空间划分为两个部分,其中的点分别称为正类和负类。以此S称为分离超平面

 

2.2 感知机学习策略

假设线性可分,由于误分点总数的损失函数 不是连续可导函数,所以根据误分点到S的总距离 作为损失函数

空间中任意一点到超平面的距离:

\frac {1}{\left \| w \right \|}\left | w\cdot x + b \right |

损失函数定义

L(w,b) = -\sum_{x_i\in M}y_i(w\cdot x + b)

M为误分类点的集合

 

2.3 感知机的学习算法

随机梯度下降法 stochastic gradient descent

原始形式和对偶形式

对偶形式的基本想法是,将w和b表示为实例x_iy_i的线性组合的形式,通过求解其系数而求得w 和 b 

原始形式:

\begin{align*} w\leftarrow w+\eta y_ix_i \\ b\leftarrow b+\eta y_i{ }\end{align*}

对偶形式:

感知机模型 f(x) = sign(\sum_{j=1}^{N} \alpha _j y_j x_j \cdot x + b)

参数更新

\begin{align*} \alpha _i \leftarrow\alpha_i + \eta\\ b\leftarrow b + \eta y_i \end{align*}

可预先将训练集中实例间的内积计算出来并以矩阵的形式存储。这个矩阵就是所谓的Gram矩阵

G=\left [ x_i \cdot x_j \right ]_{N \times N}

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值