Perceptron是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1 和 -1.
感知机对应于输入空间(特征空间)中将实例划为正负两类的分离超平面,属于判别模型
是神经网络与支持向量机的基础
2.1 感知机模型
w和b属于感知机模型参数,叫做权值或者权值向量,叫做偏置,表示两者的内积,sign是符号函数。
线性分类模型 属于判别模型
假设空间定义在特征空间中的所有线性分类模型或线性分类起,即函数集合
线性方程: 对应于特征空间中的一个超平面S, w为超平面的法向量,b为超平面的截距。平面将特征空间划分为两个部分,其中的点分别称为正类和负类。以此S称为分离超平面
2.2 感知机学习策略
假设线性可分,由于误分点总数的损失函数 不是连续可导函数,所以根据误分点到S的总距离 作为损失函数
空间中任意一点到超平面的距离:
损失函数定义
M为误分类点的集合
2.3 感知机的学习算法
随机梯度下降法 stochastic gradient descent
原始形式和对偶形式
对偶形式的基本想法是,将w和b表示为实例和的线性组合的形式,通过求解其系数而求得w 和 b
原始形式:
对偶形式:
感知机模型
参数更新
可预先将训练集中实例间的内积计算出来并以矩阵的形式存储。这个矩阵就是所谓的Gram矩阵