【实例简介】
BP神经网络实现手写数字识别,使用matlab实现。内有测试数据及实验结果,非常适合入门者使用。绝对超值、值5分。0.99MB的文件下载该文档,你不会吃亏。
【实例截图】
【核心代码】
BP神经网络实现手写数字识别matlab实现
└── BP神经网络实现手写数字识别matlab实现
├── 100-100.jpg
├── AfterAppr_0.bmp
├── AfterAppr_1.bmp
├── AfterAppr_2.bmp
├── AfterAppr_3.bmp
├── AfterAppr_4.bmp
├── AfterAppr_5.bmp
├── AfterAppr_6.bmp
├── AfterAppr_7.bmp
├── AfterAppr_8.bmp
├── AfterAppr_9.bmp
├── AfterRec_0.bmp
├── AfterRec_1.bmp
├── AfterRec_2.bmp
├── AfterRec_3.bmp
├── AfterRec_4.bmp
├── AfterRec_5.bmp
├── AfterRec_6.bmp
├── AfterRec_7.bmp
├── AfterRec_8.bmp
├── AfterRec_9.bmp
├── appr_0.bmp
├── appr_1.bmp
├── appr_2.bmp
├── appr_3.bmp
├── appr_4.bmp
├── appr_5.bmp
├── appr_6.bmp
├── appr_7.bmp
├── appr_8.bmp
├── appr_9.bmp
├── Build.asv
├── Build.m
├── E52net 100-100 100000.mat
├── E52net.mat
├── E52PT.mat
├── es.asv
├── es.m
├── FisherClassifier.asv
├── FisherClassifier.m
├── Fisher.m
├── getFeature.asv
├── getFeature.m
├── Main.m
├── met.asv
├── met.m
├── net100-100 1000000.mat
├── net5-5.mat
├── net.mat
├── NewAppr_0.bmp
├── NewAppr_1.bmp
├── NewAppr_2.bmp
├── NewAppr_3.bmp
├── NewAppr_4.bmp
├── NewAppr_5.bmp
├── NewAppr_6.bmp
├── NewAppr_7.bmp
├── NewAppr_8.bmp
├── NewAppr_9.bmp
├── NewRec_0.bmp
├── NewRec_1.bmp
├── NewRec_2.bmp
├── NewRec_3.bmp
├── NewRec_4.bmp
├── NewRec_5.bmp
├── NewRec_6.bmp
├── NewRec_7.bmp
├── NewRec_8.bmp
├── NewRec_9.bmp
├── rec_0.bmp
├── rec_1.bmp
├── rec_2.bmp
├── rec_3.bmp
├── rec_4.bmp
├── rec_5.bmp
├── rec_6.bmp
├── rec_7.bmp
├── rec_8.bmp
├── rec_9.bmp
├── Recognize.m
├── training.m
├── Untitled3.asv
├── Untitled3.m
├── Vec.asv
├── Vec.m
└── 说明.doc
1 directory, 86 files