- 博客(271)
- 收藏
- 关注
原创 ps2021神经网络滤镜不可用,ps神经网络滤镜用不了
2.半年内在使用计算机的过程中产生大量系统垃圾,影响系统性能-----可以点“开始--程序--复件--系统工具--磁盘清理”3.电脑中有恶意软件占用大量内存------可以在桌面下边的任务栏右键--任务管理器,找到占用CPU较大的程序将其终止,然后卸载(可以用360)4.PS本身问题,如果以上几种都没问题,那你可以在PS菜单栏中点“编辑--首选项--内存与图像高速缓存”,把里面的数值设的大一些(按你说的半年没用PS了,这种可能小一些)最快的解决方法,就是重做系统和重安PS,并且百分百有效。
2022-10-22 11:19:54 3287 1
原创 关于卷积神经网络的论文,卷积神经网络创始人
6)计算W[S1][S0],b[S1];9))输出W1[S1][S0],b1[S1]。三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…
2022-10-22 11:18:30 578
原创 神经网络应用现状分析,神经网络应用现状调查
同时BP算法与其它算法一样,也存在自身的缺陷:(1)由于该算法采用误差导数指导学习过程,在存在较多局部极小点的情况下容易陷入局部极小点,不能保证收敛到全局最小点:(2)存在学习速度与精度之间的矛盾,当学习速度较快时,学习过程容易产生振荡,难以得到精确结果,而当学习速度较慢时,虽然结果的精度较高,但学习周期太长:(3)算法学习收敛速度慢;(4)网络学习记忆具有不稳定性,即当给一个训练好的网络提供新的学习记忆模式时,将使已有的连接权值打乱,导致已记忆的学习模式的信息消失;(2)相关文献资料。
2022-10-22 11:15:48 697
原创 神经网络原理的简单介绍,神经网络的基本原理
一.一些基本常识和原理 [什么叫神经网络?] 人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
2022-10-22 11:13:34 4806
原创 电力通信专业技术总结,智能电网通信技术总结
1、电力系统通信的重要性和特点由于电力系统生产的不容间断性和运行状态变化的突然性,要求电力调度通信高度可靠、传输时间十分迅速,因此需要建立与电力系统安全运行相适应的专用通信网,对于在系统运行中具有重要意义的发电厂、变电所尚应保证能有互为备用的通信通道好文案。2、 电力系统通信的主要内容电力系统中信息的内容是多种多样的,经常传递的信息有:(1)、电话、调度电话和管理电话;(2)、远动和数据信号;(3)、远方保护信号;(4)、传真;(5)、计算机通信;(6)、系统运行状态图像信息;
2022-10-22 11:12:08 1743
原创 神经网络结果图如何看,神经网络进行图像分类
3、基于MATLAB 语言的网络训练与仿真建立并初始化网络% ================S1 = 24;在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。
2022-10-22 11:11:02 351
原创 神经网络讲解与实例,神经网络讲解教案
如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模拟摄像机滤色镜产生的柔和效果。模糊处理——模糊的卷积核由一组系数构成,每个系数都小于1,但它们的和恰好等于1,每个像素都吸收了周围像素的颜色,每个像素的颜色分散给了它周围的像素,最后得到的图像中,一些刺目的边缘变得柔和。要进行水彩处理,首先要对图像中的色彩进行平滑处理,把每个像素的颜色值和它周围的二十四个相邻的像素颜色值放在一个表中,然后由小到大排序,把表中间的一个颜色值作为这个像素的颜色值。
2022-10-22 11:09:56 363
原创 基于matlab的神经网络设计,深度神经网络代码matlab
但是特征太多计算量太大,就用统计的方法减少下特征,首先把图片划分成网格的形式,就像是在图像上画围棋线一样,然后每个方格内单独统计一下,方向在0-20角度内的像素的梯度的和是多少,依次类推,就得到了直方图,如果以20度为一个直方的话,那么180度就可以划分成9个直方,也就是9个特征,这样一个方格内的特征数量就与像素的数量无关了,而是固定了的。如果只是关心结果的话,Github上可以找到关于车牌识别的一些开源项目,比如openalpr之类的,当然也是采用深度学习的办法,炼丹嘛,就是这么直接。
2022-10-21 12:06:49 2264
原创 深度神经网络图像识别,深度神经网络图像配准
深度学习已经深入各个领域无人车,智能回答,智能翻译,天气预报,股票预测,人脸比对,声纹比对,等其他许多有趣的应用,比如智能插画,自动作诗,自动写作文,等都可以通过深度学习来完成深度神经网络目前有哪些成功的应用。深度学习已经深入各个领域无人车,智能回答,智能翻译,天气预报,股票预测,人脸比对,声纹比对,等其他许多有趣的应用,比如智能插画,自动作诗,自动写作文,等都可以通过深度学习来完成。找深度学习和神经网络的不同点,其实主要的就是:原来多层神经网络做的步骤是:特征映射到值。特征是由网络自己选择。
2022-10-21 12:05:43 1026
原创 专用神经网络处理器的芯片,cpu可以跑神经网络吗
内存:4X8G 显示卡: 两个NV GTX 1070硬盘: HDD一个, SSD两个③ 配置主机需要了解的参数(在上一篇博客中已经详细介绍了各个参数的含义):GPU:一个好的GPU可以将你的训练时间从几周缩减成几天,所以选GPU一定要非常慎重。① 预算一万以内的机器学习台式机/主机配置:② 从李飞飞的课程里,可以看到她的电脑配置,这个配置是机器学习的基本设置。在英伟达产品系列中,有消费领域的GeForce系列,有专业绘图领域的Quadro系列,有高性能计算领域的Tesla系列,如何选择?
2022-10-21 12:04:36 1932
原创 神经网络结构的缺点是,各种神经网络的优缺点
多层前向BP网络的问题:从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;3. RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。
2022-10-21 12:03:28 1282
原创 神经网络的数据预测论文,神经网络预测未来数据
t1' P']% 画出预测图figure(6),plot(t,x,'b*-'),hold onplot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid onxlabel('周数'),ylabel('销售量');str=['BP神经网络预测',num2str(length(x)+1),'-',num2str(length(x)+20),'周的销售量'];title(str)str1=['1-',num2str(length(x)),'周的销售量'];
2022-10-21 12:02:22 233
原创 遗传算法和神经网络结合在税收中的运用
杂交?你指的是混合吗?神经网络与遗传算法相混合的例子很多,还有其他智能算法相混合的,比如说遗传算法和模拟退火算法,变邻域搜索算法和禁忌搜索算法的混合等。如果你说的是遗传算法中的杂交,那么杂交算法应该指的就是遗传算法。
2022-10-21 12:00:59 326
原创 人工神经网络和卷积神经网络的区别
卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。6、深度学习之外的人工智能。
2022-10-21 11:59:47 3684
原创 人工神经网络的应用实例,人工神经网络简单例题
我想这可能是你想要的神经网络吧!什么是神经网络:人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
2022-10-21 11:58:41 749
原创 人工神经网络的算法原理,深度神经网络工作原理
人工智能的工作原理是:计算机会通过传感器(或人工输入的方式)来收集关于某个情景的事实。计算机将此信息与已存储的信息进行比较,以确定它的含义。计算机会根据收集来的信息计算各种可能的动作,然后预测哪种动作的效果最好。计算机只能解决程序允许解决的问题,不具备一般意义上的分析能力。简介:人工智能(Artificial Intelligence),英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
2022-10-21 11:57:14 1193 1
原创 人工神经网络的典型模型,人工神经网络模型定义
第三,具有高速寻找优化解的能力。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。1、例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。
2022-10-21 11:56:06 393
原创 神经网络炒股出现的问题,炒股容易得神经病吗
当然,最后一次的买入总是错的,因为趋势总有反转的时候。猎豹成功的要点是认错,在正确的止损操作的前提下,猎豹出击10次赢六次,每次输也只输10%左右。单支股票价格,多股组合,大盘这些都可以使用神经网络来学习,02年就做过了,涨跌预测平均能达到54%到57%的准确率,但是只能定性,无法定量,因此,在扣除印花税之后无利可图。所谓训练,是将历史数据输入网络,然后将输出的结果和作为导师的参考答案相比较,再根据差距自动调节网络的参数,如此一步步地调整,直到其能够输出令人满意的结果,而完成训练的程序就可以用来预测了。
2022-10-17 13:54:38 1253
原创 基于人工神经网络的预测,人工神经网络模型预测
神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。不同的网络有不同的结构和不同的学习算法。
2022-10-17 13:53:12 437
原创 仿真脉冲神经网络的作用,仿真脉冲神经网络技术
脉冲神经网络 (SNN-Spiking Neuron Networks) 经常被誉为第三代人工神经网络。第一代神经网络是感知器,它是一个简单的神经元模型并且只能处理二进制数据。第二代神经网络包括比较广泛,包括应用较多的BP神经网络。但是从本质来讲,这些神经网络都是基于神经脉冲的频率进行编码( rate coded)。脉冲神经网络,其模拟神经元更加接近实际,除此之外,把时间信息的影响也考虑其中。
2022-10-17 13:52:05 201
原创 层状神经网络结构示意图,神经网络基本结构说明
1、全连接神经网络解析:对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。2、全连接的神经网络示意图:3、“全连接”是一种不错的模式,但是网络很大的时候,训练速度回很慢。部分连接就是认为的切断某两个节点直接的连接,这样训练时计算量大大减小。
2022-10-17 13:50:40 342
原创 常见的循环神经网络结构,循环神经网络分类图片
在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。3、RNN:神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!
2022-10-17 13:49:17 512
原创 函数在神经网络中的作用,神经网络常用函数
我觉得 就 BP 神经网络就很好好 ,你 分为31 类, 输出层31, 一般隐层 2-4 层就可以了,你的第一层 没必要弄那么多神经元吧,第二层也是,没必要那么多,你开始可以【5,5,31】,在设置 一定的迭代次数,和误差,看看训练结果 好不 ,不好的话在适当增加第1 .2 层的 神经元个数 比如改为【10,5 ,31】。所以,神经网络必须要用非线性函数。一般来说,神经网络的激励函数有以下几种:阶跃函数 ,准线性函数,双曲正切函数,Sigmoid函数等等,其中sigmoid函数就是你所说的S型函数。
2022-10-17 13:48:12 929
原创 卷积神经网络算法三大类,卷积神经网络算法实现
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。yolo算法原理因为它采用深层卷积神经网络,吸收了当前很多经典卷积神经网络架构的优秀思想,在位置检测和对象的识别方面,性能达到最优(准确率非常高的情况下还能达到实时检测)。目标检测任务的目标是找到图像中的所有感兴趣区域,并确定这些区域的位置和类别概率。
2022-10-17 13:46:46 850
原创 神经网络反向传播的作用,人工神经网络反向传播
W代表所有层的特征权值,Wij(l)代表第l层的第i个元素与第j个特征的特征权值m代表样本个数,k代表输出单元个数hw(x(i))k代表第i个样本在输出层的第k个样本的输出 y(i)k代表第i个样本的第k个输出然后同于logistic回归,将所有的W更新即可。表示第层的第个神经元的输入,即:表示第层的第个神经元的输出,即:其中表示激活函数。其实神经网络的实质就是每一层隐藏层(除输入和输出的节点,后面介绍)的生成,都生成了新的特征,新的特征在此生成新的特征,知道最新的特征能很好的表示该模型为止。
2022-10-17 13:45:40 324
原创 神经网络滤镜不能使用吗,神经滤镜为什么不能用
但是matlab的神经网络工具箱的一个函数可能有bug,在gpu上运行double变量的数据集时没有问题,但运行single变量时可能会弹出如下错误:Error using gpuArray/arrayfunVariable xx changed type.修复该问题需要在源文件上作一些修改,具体内容这里没法三言两语说清楚,如果遇到该问题可以留言经过本人测试,single型的数据集在gpu上可以取得数十倍的加速,具体加速情况与具体gpu型号有关。5、进入账户更改,将【允许】更改为【不允许】,如下图所示。
2022-10-17 13:44:15 763
原创 神经网络评价模型,神经网络评价指标
2. 基于期权定价理论的测度方法,这是美国KMV公司利用期权定价理论创立的违约概率预测模型——信用监测模型,也称KMV模型,是一种向前看的动态模型,主要适用于对公开上市公司的违约概率测度;开展企业信用评级的工作主要有4种方法:一、判别分析法:分析法是根据已知的违约和非违约的企业进行分类构成符于个总体,由这若干个总体的特征找出一个判别函数,用于判别任意已观察的向量应判属于哪一个总体,以及检验两个或多个母体,在所测量的指标变量上,是否有显著差异,如有则指出为哪些指标。
2022-10-17 13:43:10 1440
原创 人工神经元算法视频教学,人工智能神经网络算法
人工神经网络算法 “人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,F Rosenblatt、Widrow和J. J .Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
2022-10-13 13:07:16 971
原创 神经网络硕士就业前景,计算神经科学就业前景
一、算法工程师简介(通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看)算法工程师目前是一个高端也是相对紧缺的职位;算法工程师包括音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师(@之介感谢补充)、其他【其他一切需要复杂
2022-10-13 13:06:09 8353
原创 神经网络入门书籍推荐,神经网络基础书籍
你好,我的工作主要就是研究DNN,RNN等神经网络。书籍什么的好像真的比较少,CSDN上好像有分享,我平时用来查阅的书是《Pattern Recognition and Machine Learning》,这本书是将模式识别的,里面有神经网络的内容。不过,现在有各种各样的帖子和博客在探讨DNN或是其他神经网络,其中有很多讲的深入浅出,非常适合初级和进阶学习,如:。当然CSDN上有无穷无尽的大牛,你自己探索一下便能很快入门。
2022-10-13 13:04:42 794
原创 BP神经网络算法基本原理,bp神经网络的算法步骤
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。
2022-10-13 12:57:08 2091
原创 卷积神经网络训练流程图,卷积神经网络详细教程
border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。且在一个通道内,所有神经元的权重系数相同。
2022-10-11 12:00:43 636
原创 常见的神经网络控制结构,神经网络分子结构模型
4.2人工神经网络的优缺点人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。不同磷酸盐基团之间的凹槽仍然暴露在外。因此,对于由少量神经细胞组成的局部小回路(小网络),目前的研究主要集中于突触(神经细胞互相连接的部位)的可塑性和细胞间的相互关系(兴奋或抑制的模式)。
2022-10-11 11:57:53 931
原创 神经网络的公式怎么计算,神经网络的公式有哪些
其实神经网络的准确率的标准是自己定义的。我把你的例子赋予某种意义讲解:1,期望输出[1 0 0 1],每个元素代表一个属性是否存在。像着4个元素分别表示:是否肺炎,是否肝炎,是否肾炎,是否胆炎,1表示是,0表示不是。2,你的神经网络输出必定不可能全部都是输出只有0,1的输出。绝大部分是像[ 0.9968 0.0000 0.0001 0.9970]这样的输出,所以只要输出中的某个元素大于一定的值,例如0.7,我们就认为这个元素是1,即是有某种炎。否则为0,所以你的[ 0.9968 0.0000 0.0001
2022-10-11 11:56:28 2397
原创 神经网络层数越多越好吗,神经网络层数怎么确定
The neuron --------------------------------------------------------------------------------虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。Introduction --------------------------------------------------------------------------------神经网络是新技术领域中的一个时尚词汇。
2022-10-11 11:55:03 1069
原创 神经网络利用哪种算法将损失函数的值降到最低
深度学习之损失函数与激活函数的选择在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结。其中使用的损失函数是均方差,而激活函数是Sigmoid。实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?以下是本文的内容。MSE损失+Sigmoid激活函数的问题先来看看均方差+Sigmoid的组合有什么问题。回顾下Sigmoid激活函数的表达式为:函数图像如下:从图上可以看出,对于Sigmoid,当z的取值越来越大后,函数曲线变得越来越平缓,意味着
2022-10-11 11:53:39 628
原创 智能建筑现状及发展趋势,建筑智能化的发展趋势
随着我国社会生产力水平的不断进步,随着我国计算机网络技术、现代控制技术、智能卡技术、可视化技术、无线局域网技术、数据卫星通信技术等高科技技术水平的不断提升,智能建筑将会在未来我国的城市建设中发挥更加重要的作用,将会作为现代建筑甚至未来建筑的一个有机组成部分,不断吸收并采用新的可靠性技术,不断实现设计和技术上的突破,为传统的建筑概念赋予新的内容,稳定且持续不断改进才是今后的发展方向。与此同时,2019年全球通过万物互联传输的数据规模已达到14ZB,2025年传输规模则将达到80ZB。
2022-10-11 11:52:16 8725
原创 3000字神经网络论文
在书柜里发现了小学一年级的课本,那时我一定热衷于绘画,书页的空白处有很多形状古怪的人物画像,有铅笔的,圆珠笔的,多是侧面女像,年幼的我尚未领悟温婉的动人,画像个个都是长脖平胸,直眉瞪眼地看着前方,令人哭笑不得。不必说菜地里滚圆的冬瓜,水灵灵的豌豆,摆着紫脸的茄子,顶着小花的黄瓜,也不必说忙着搬家的蚂蚁,啃着菜叶的蜗牛,一拱一拱前进的毛毛虫,高大杨树上鸣叫的蝉,单是四周围墙上的壁画,就能带给人无限的乐趣。落叶之美,我对你情有独钟,我会把你留下的美好的记忆收好,等来年你的到来,我们还会再见,你说,是吗?
2022-10-10 14:26:28 733
原创 图像相似度的算法 开源,图像相似度的算法公式
由于人类视觉很容易从图像中抽取出结构信息,因此计算两幅图像结构信息的相似性就可以用来作为一种检测图像质量的好坏.首先结构信息不应该受到照明的影响,因此在计算结构信息时需要去掉亮度信息,即需要减掉图像的均值;所以目前最成熟的编程算法也就是识别一下字母和数字(比如谷歌可以识别照片上的门牌号和街道号),人脸识别也只是拿几个标本部位来大致判断相似度(眼睛的大小,鼻梁的高度,脸颊的宽瘦和比例), 以人眼的标准完整的去比较两张图片是否一样是很难的,目前应该还没有这方面成熟的技术。
2022-10-10 14:25:03 984
原创 网状神经系统的典型特点,网状结构神经系统
肌紧张即缓慢持续前拉肌肉时,所引起的牵张反射。脑干对肌紧张的调节 在中脑上、下丘之间切断脑干后,动物出现抗重力肌(伸肌)的肌紧张亢进,表现为四肢伸直,坚硬如柱,头尾昂起,脊柱挺硬,这一现象称为去大脑僵直(decerebrate rigidity)。如果此时于某一肌肉内注入局麻药或切断相应的脊髓后根以消除肌梭传人冲动,则该肌的僵直现象即消失。可见去大脑僵直是一种增强的牵张反射。网状结构中存在抑制或加强肌紧张及肌运动的区域,前者称为抑制区(inhitory area),位于延髓网状结构腹内侧部分;
2022-10-10 14:23:38 3029
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人