python可视化迷宫求解_Python使用回溯法子集树模板解决迷宫问题示例

本文实例讲述了Python使用回溯法解决迷宫问题。分享给大家供大家参考,具体如下:

问题

给定一个迷宫,入口已知。问是否有路径从入口到出口,若有则输出一条这样的路径。注意移动可以从上、下、左、右、上左、上右、下左、下右八个方向进行。迷宫输入0表示可走,输入1表示墙。为方便起见,用1将迷宫围起来避免边界问题。

分析

考虑到左、右是相对的,因此修改为:北、东北、东、东南、南、西南、西、西北八个方向。在任意一格内,有8个方向可以选择,亦即8种状态可选。因此从入口格子开始,每进入一格都要遍历这8种状态。

显然,可以套用回溯法的子集树模板。

注意,解的长度是不固定的。

代码

# 迷宫(1是墙,0是通路)

maze = [[1,1,1,1,1,1,1,1,1,1],

[0,0,1,0,1,1,1,1,0,1],

[1,1,0,1,0,1,1,0,1,1],

[1,0,1,1,1,0,0,1,1,1],

[1,1,1,0,0,1,1,0,1,1],

[1,1,0,1,1,1,1,1,0,1],

[1,0,1,0,0,1,1,1,1,0],

[1,1,1,1,1,0,1,1,1,1]]

m, n = 8, 10 # 8行,10列

entry = (1,0) # 迷宫入口

path = [entry] # 一个解(路径)

paths = [] # 一组解

# 移动的方向(顺时针8个:N, EN, E, ES, S, WS, W, WN)

directions = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]

# 冲突检测

def conflict(nx, ny):

global m,n,maze

# 是否在迷宫中,以及是否可通行

if 0 <= nx < m and 0 <= ny < n and maze[nx][ny]==0:

return False

return True

# 套用子集树模板

def walk(x, y): # 到达(x,y)格子

global entry,m,n,maze,path,paths,directions

if (x,y) != entry and (x % (m-1) ==0 or y % (n-1) == 0): # 出口

#print(path)

paths.append(path[:]) # 直接保存,未做最优化

else:

for d in directions: # 遍历8个方向(亦即8个状态)

nx, ny = x+d[0], y+d[1]

path.append((nx,ny)) # 保存,新坐标入栈

if not conflict(nx, ny): # 剪枝

maze[nx][ny] = 2 # 标记,已访问(奇怪,此两句只能放在if区块内!)

walk(nx, ny)

maze[nx][ny] = 0 # 回溯,恢复

path.pop() # 回溯,出栈

# 解的可视化(根据一个解x,复原迷宫路径,'2'表示通路)

def show(path):

global maze

import pprint, copy

maze2 = copy.deepcopy(maze)

for p in path:

maze2[p[0]][p[1]] = 2 # 通路

pprint.pprint(maze) # 原迷宫

print()

pprint.pprint(maze2) # 带通路的迷宫

# 测试

walk(1,0)

print(paths[-1], '\n') # 看看最后一条路径

show(paths[-1])

效果图

希望本文所述对大家Python程序设计有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值