tensorflow gpu利用率低_TensorFlow 模型优化工具 — float16 量化将模型体积减半

本文介绍了TensorFlow模型优化工具中的float16量化,该技术能在几乎不牺牲准确度的情况下将模型大小缩减50%。通过降低精度到半精度浮点数,模型尺寸减半,对边缘设备部署带来显著优势。实验显示,即使在MobileNet等模型上,准确度损失也非常微小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bd86749ba1e2d0cca2c75b482fdfcf16.png

我们很高兴在模型优化工具包中添加训练后的半精度浮点量化 (float16 quantization),此工具套件包含混合量化 (hybrid quantization)、训练后整形量化 (full integer quantization) 和剪枝 (pruning)。点此查看发展蓝图中的其他工具。

训练后的半精度浮点量化可以在损失极少准确度的情况下,缩小 TensorFlow Lite 模型的大小(最高可缩减 50%)。它将模型常量(如权重和偏差值)从全精度浮点(32 位)量化为精度下降的浮点数据类型 (IEEE FP16)。

注:量化 链接

https://tensorflow.google.cn/model_optimization/guide#quantization

训练后的半精度浮点量化不但对准确度的影响很小,而且能显著缩小模型尺寸,因而是初始量化 TensorFlow Lite 模型的好工具。您可在此处查看我们的文档(包含新的浮点图表),了解不同的量化选项和方案。

注:文档 链接

https://tensorflow.google.cn/lite/performance/post_training_quantization

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值