小甲鱼数据结构代码_JavaScript 数据结构与算法之美 - 递归

ee0267a07b1b3128d91e536f0dce2fc2.png

1. 前言

算法为王。
排序算法博大精深,前辈们用了数年甚至一辈子的心血研究出来的算法,更值得我们学习与推敲。

因为之后要讲有内容和算法,其代码的实现都要用到递归,所以,搞懂递归非常重要。

2. 定义

  • 方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
  • 简单来说就是:自己调用自己

现实例子:周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊 ?电影院里面太黑了,看不清,没法数,现在你怎么办 ?

于是你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。 但是,前面的人也看不清啊,所以他也问他前面的人。 就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。 直到你前面的人告诉你他在哪一排,于是你就知道答案了。

基本上,所有的递归问题都可以用递推公式来表示,比如:

f(n) = f(n-1) + 1; 
// 其中,f(1) = 1

f(n) 表示你想知道自己在哪一排,f(n-1) 表示前面一排所在的排数,f(1) = 1 表示第一排的人知道自己在第一排。

有了这个递推公式,我们就可以很轻松地将它改为递归代码,如下:

function f(n) {
  if (n == 1) return 1;
  return f(n-1) + 1;
}

3. 为什么使用递归 ?递归的优缺点 ?

  • 优点:代码的表达力很强,写起来简洁。
  • 缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。

4. 什么样的问题可以用递归解决呢 ?

一个问题只要同时满足以下 3 个条件,就可以用递归来解决。

  • 问题的解可以分解为几个子问题的解。何为子问题 ?就是数据规模更小的问题。 比如,前面讲的电影院的例子,你要知道,自己在哪一排的问题,可以分解为前一排的人在哪一排这样一个子问题。
  • 问题与子问题,除了数据规模不同,求解思路完全一样 比如电影院那个例子,你求解自己在哪一排的思路,和前面一排人求解自己在哪一排的思路,是一模一样的。
  • 存在递归终止条件 比如电影院的例子,第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是 f(1) = 1,这就是递归的终止条件。

5. 递归常见问题及解决方案

  • 警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
  • 警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。

6. 如何实现递归 ?

1. 递归代码编写

写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。

2. 递归代码理解

对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。

那该如何理解递归代码呢 ?

  • 如果一个问题 A 可以分解为若干个子问题 B、C、D,你可以假设子问题 B、C、D 已经解决。
  • 而且,你只需要思考问题 A 与子问题 B、C、D 两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。
  • 屏蔽掉递归细节,这样子理解起来就简单多了。

因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。

7. 例子

1. 一个阶乘的例子:

function fact(num) {
  if (num <= 1) {
    return 1;
  } else {
    return num * fact(num - 1);
    }
}
fact(3) // 结果为 6

以下代码可导致出错:

var anotherFact = fact; 
fact = null; 
alert(antherFact(4)); //出错

由于 fact 已经不是函数了,所以出错。

使用 arguments.callee

arguments.callee 是一个指向正在执行的函数的指针,arguments.callee 返回正在被执行的对现象。 新的函数为:

function fact(num){ 
    if (num <= 1){ 
        return 1; 
    }else{ 
        return num * arguments.callee(num - 1); //此处更改了。 
    } 
} 
var anotherFact = fact; 
fact = null; 
alert(antherFact(4)); // 结果为 24

2. 再看一个多叉树的例子

先看图

dc6cd31789f388d93bf30af3e2ed0ee9.png

叶子结点:就是深度为 0 的结点,也就是没有孩子结点的结点,简单的说就是一个二叉树任意一个分支上的终端节点。

数据结构格式,参考如下代码:

const json = {
  name: 'A',
  children: [
    {
      name: 'B',
      children: [
        {
          name: 'E',
        },
        {
          name: 'F',
        },
        {
          name: 'G',
        }
      ]
    },
    {
      name: 'C',
      children: [
        {
          name: 'H'
        }
      ]
    },
    {
      name: 'D',
      children: [
        {
          name: 'I',
        },
        {
          name: 'J',
        }
      ]
    }
  ]
}

我们如何获取根节点的所有叶子节点个数呢 ?

递归代码如下:

/**
 * 获取根节点的所有 叶子节点 个数
 * @param {Object} json Object 对象
 */
function getLeafCountTree(json) {
  if(!json.children){
      return 1;
  } else {
      let leafCount = 0;
      for(let i = 0 ; i < json.children.length ; i++){
          // leafCount = leafCount + getLeafCountTree(json.children[i]);
          leafCount = leafCount + arguments.callee(json.children[i]);
      }
      return leafCount;
  }
}

递归遍历是比较常用的方法,比如:省市区遍历成树、多叉树、阶乘等。

8. 文章输出计划

JavaScript 数据结构与算法之美 系列文章,暂时写了如下的 11 篇文章,后续还有想写的内容,再补充。

所写的内容只是数据结构与算法内容的冰山一角,如果你还想学更多的内容,推荐学习王争老师的 数据结构与算法之美

从时间和空间复杂度、基础数据结构到排序算法,文章的内容有一定的关联性,所以阅读时推荐按顺序来阅读,效果更佳。

  • 1. JavaScript 数据结构与算法之美 - 时间和空间复杂度
  • 2. JavaScript 数据结构与算法之美 - 线性表(数组、队列、栈、链表)
  • 3. JavaScript 数据结构与算法之美 - 实现一个前端路由,如何实现浏览器的前进与后退 ?
  • 4. JavaScript 数据结构与算法之美 - 栈内存与堆内存 、浅拷贝与深拷贝
  • 5. JavaScript 数据结构与算法之美 - 递归
  • 6. JavaScript 数据结构与算法之美 - 非线性表(树、堆)
  • 7. JavaScript 数据结构与算法之美 - 冒泡排序、选择排序、插入排序
  • 8. JavaScript 数据结构与算法之美 - 归并排序、快速排序、希尔排序、堆排序
  • 9. JavaScript 数据结构与算法之美 - 计数排序、桶排序、基数排序
  • 10. JavaScript 数据结构与算法之美 - 十大经典排序算法汇总
  • 11. JavaScript 数据结构与算法之美 - 强烈推荐 GitHub 上值得前端学习的数据结构与算法项目
如果有错误或者不严谨的地方,请务必给予指正,以免误人子弟,十分感谢。

9. 最后

文中所有的代码及测试事例都已经放到我的 GitHub 上了。

笔者为了写好这系列的文章,花费了大量的业余时间,边学边写,边写边修改,前后历时差不多 2 个月,入门级的文章总算是写完了。

如果你觉得有用或者喜欢,就点收藏,顺便点个赞吧,你的支持是我最大的鼓励 !

参考文章:

递归:如何用三行代码找到“最终推荐人”?

6b3d2f18e86efdfe0d5e1003a7e24bbb.png

e921b6209ae8a3167815a4ae703da23b.gif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值