1. 前言
算法为王。
排序算法博大精深,前辈们用了数年甚至一辈子的心血研究出来的算法,更值得我们学习与推敲。
因为之后要讲有内容和算法,其代码的实现都要用到递归,所以,搞懂递归非常重要。
2. 定义
- 方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
- 简单来说就是:自己调用自己。
现实例子:周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊 ?电影院里面太黑了,看不清,没法数,现在你怎么办 ?
于是你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。 但是,前面的人也看不清啊,所以他也问他前面的人。 就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。 直到你前面的人告诉你他在哪一排,于是你就知道答案了。
基本上,所有的递归问题都可以用递推公式来表示,比如:
f(n) = f(n-1) + 1;
// 其中,f(1) = 1
f(n) 表示你想知道自己在哪一排,f(n-1) 表示前面一排所在的排数,f(1) = 1 表示第一排的人知道自己在第一排。
有了这个递推公式,我们就可以很轻松地将它改为递归代码,如下:
function f(n) {
if (n == 1) return 1;
return f(n-1) + 1;
}
3. 为什么使用递归 ?递归的优缺点 ?
- 优点:代码的表达力很强,写起来简洁。
- 缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。
4. 什么样的问题可以用递归解决呢 ?
一个问题只要同时满足以下 3 个条件,就可以用递归来解决。
- 问题的解可以分解为几个子问题的解。何为子问题 ?就是数据规模更小的问题。 比如,前面讲的电影院的例子,你要知道,
自己在哪一排
的问题,可以分解为前一排的人在哪一排
这样一个子问题。 - 问题与子问题,除了数据规模不同,求解思路完全一样 比如电影院那个例子,你求解
自己在哪一排
的思路,和前面一排人求解自己在哪一排
的思路,是一模一样的。 - 存在递归终止条件 比如电影院的例子,第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是 f(1) = 1,这就是递归的终止条件。
5. 递归常见问题及解决方案
- 警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
- 警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。
6. 如何实现递归 ?
1. 递归代码编写
写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
2. 递归代码理解
对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。
那该如何理解递归代码呢 ?
- 如果一个问题 A 可以分解为若干个子问题 B、C、D,你可以假设子问题 B、C、D 已经解决。
- 而且,你只需要思考问题 A 与子问题 B、C、D 两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。
- 屏蔽掉递归细节,这样子理解起来就简单多了。
因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
7. 例子
1. 一个阶乘的例子:
function fact(num) {
if (num <= 1) {
return 1;
} else {
return num * fact(num - 1);
}
}
fact(3) // 结果为 6
以下代码可导致出错:
var anotherFact = fact;
fact = null;
alert(antherFact(4)); //出错
由于 fact 已经不是函数了,所以出错。
使用 arguments.callee
arguments.callee 是一个指向正在执行的函数的指针,arguments.callee 返回正在被执行的对现象。 新的函数为:
function fact(num){
if (num <= 1){
return 1;
}else{
return num * arguments.callee(num - 1); //此处更改了。
}
}
var anotherFact = fact;
fact = null;
alert(antherFact(4)); // 结果为 24
2. 再看一个多叉树的例子
先看图
叶子结点:就是深度为 0 的结点,也就是没有孩子结点的结点,简单的说就是一个二叉树任意一个分支上的终端节点。
数据结构格式,参考如下代码:
const json = {
name: 'A',
children: [
{
name: 'B',
children: [
{
name: 'E',
},
{
name: 'F',
},
{
name: 'G',
}
]
},
{
name: 'C',
children: [
{
name: 'H'
}
]
},
{
name: 'D',
children: [
{
name: 'I',
},
{
name: 'J',
}
]
}
]
}
我们如何获取根节点的所有叶子节点个数呢 ?
递归代码如下:
/**
* 获取根节点的所有 叶子节点 个数
* @param {Object} json Object 对象
*/
function getLeafCountTree(json) {
if(!json.children){
return 1;
} else {
let leafCount = 0;
for(let i = 0 ; i < json.children.length ; i++){
// leafCount = leafCount + getLeafCountTree(json.children[i]);
leafCount = leafCount + arguments.callee(json.children[i]);
}
return leafCount;
}
}
递归遍历是比较常用的方法,比如:省市区遍历成树、多叉树、阶乘等。
8. 文章输出计划
JavaScript 数据结构与算法之美 系列文章,暂时写了如下的 11 篇文章,后续还有想写的内容,再补充。
所写的内容只是数据结构与算法内容的冰山一角,如果你还想学更多的内容,推荐学习王争老师的 数据结构与算法之美。
从时间和空间复杂度、基础数据结构到排序算法,文章的内容有一定的关联性,所以阅读时推荐按顺序来阅读,效果更佳。
- 1. JavaScript 数据结构与算法之美 - 时间和空间复杂度
- 2. JavaScript 数据结构与算法之美 - 线性表(数组、队列、栈、链表)
- 3. JavaScript 数据结构与算法之美 - 实现一个前端路由,如何实现浏览器的前进与后退 ?
- 4. JavaScript 数据结构与算法之美 - 栈内存与堆内存 、浅拷贝与深拷贝
- 5. JavaScript 数据结构与算法之美 - 递归
- 6. JavaScript 数据结构与算法之美 - 非线性表(树、堆)
- 7. JavaScript 数据结构与算法之美 - 冒泡排序、选择排序、插入排序
- 8. JavaScript 数据结构与算法之美 - 归并排序、快速排序、希尔排序、堆排序
- 9. JavaScript 数据结构与算法之美 - 计数排序、桶排序、基数排序
- 10. JavaScript 数据结构与算法之美 - 十大经典排序算法汇总
- 11. JavaScript 数据结构与算法之美 - 强烈推荐 GitHub 上值得前端学习的数据结构与算法项目
如果有错误或者不严谨的地方,请务必给予指正,以免误人子弟,十分感谢。
9. 最后
文中所有的代码及测试事例都已经放到我的 GitHub 上了。
笔者为了写好这系列的文章,花费了大量的业余时间,边学边写,边写边修改,前后历时差不多 2 个月,入门级的文章总算是写完了。
如果你觉得有用或者喜欢,就点收藏,顺便点个赞吧,你的支持是我最大的鼓励 !
参考文章:
递归:如何用三行代码找到“最终推荐人”?