同等学力计算机2019试题,2019年同等学力申硕计算机综合试题解析--数学基础

这篇博客探讨了逻辑符号表达、集合论、图论和递推关系等多个数学概念。涉及命题逻辑公式转换、等价关系与偏序关系的构建、完全二部图的着色数计算以及树的平均度与顶点数的关系。还涵盖了组合计数问题和序列的母函数计算。内容深入浅出,结合实例进行了解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

声明:该份试题解析是本人自己做的,再根据教材理论来完成本文编写,符号太多编写工作量大,如发现答案有错误或者不够准确请及时给我留言,如需转载请表明出处。(3月底开始更新2020年试题)

一、用逻辑符号表达下列语句(论域为包含一切事物的集合)

1)过平面上的两个点,有且只有一条直线通过

解析: (仅供参考)

math?formula=P_%7B%EF%BC%88x%EF%BC%8Cy%EF%BC%89%7D%20: x,y是平面上的两个点,

math?formula=Q_%7B%EF%BC%88x%2Cy%2Cz%EF%BC%89%7D%20: z是过x和y的直线,

math?formula=R_%7B%EF%BC%88x%EF%BC%8Cy%EF%BC%89%7D%20:x与y相同

math?formula=%5Cforall%20x%5Cforall%20y%5Cforall%20z%5Cexists%20w%20P_%7B%EF%BC%88x%EF%BC%8Cy%EF%BC%89%7D%5Cland%20Q_%7B%EF%BC%88x%EF%BC%8Cy%EF%BC%8Cz%EF%BC%89%7D%20%5Cland%20Q_%7B%EF%BC%88x%EF%BC%8Cy%EF%BC%8Cw%EF%BC%89%20%7D%20%5Crightarrow%20R_%7B%EF%BC%88z%EF%BC%8Cw%EF%BC%89%7D

2)并不是所有的士兵都想当将军,而且不想当将军的士兵未必不是好士兵(一种形式,包含全称量词和存在量词)

解析:(仅供参考)

math?formula=P_%7B%EF%BC%88x%EF%BC%89%7D%20:x是士兵, 

math?formula=Q_%7B%EF%BC%88x%EF%BC%89%7D%20:x 想当将军,

math?formula=R_%7B%EF%BC%88x%EF%BC%89%7D%20x是好士兵;

math?formula=%5Cforall%20x%20P_%7B%EF%BC%88x%EF%BC%89%7D%20%5Crightarrow%20%20%20%20Q_%7B%EF%BC%88x%EF%BC%89%7D%20%5Cland%20%20%5Cexists%20x%20%20(%20%20%20%E2%94%90Q_%7B%EF%BC%88x%EF%BC%89%7D%20%5Cland%20%20R_%7B%EF%BC%88x%EF%BC%89%7D)

二、填空题

1.集合A={1,2,3,4,5,6,7}, A上的一个划分R={{1,2},{3,4,5}, {6,7}}. 那么所对应的等价关系R包含的有序对的个数是(17)个.定义偏序关系为集合A上的整除关系,则这个偏序关系上含有的有序对个数是( 16)个.集合A上有(128 )个既是对称又是反对称的关系。

解析: 第1空:用笛卡尔积的方法 2X2 + 3X3 +2X2 = 17;

第2空:整除偏序关系有<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<7,7>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<2,4>,<2,6>,<3,6>,因此是16个;

第3空:既是对称又是反对称,用矩阵来表示,即对角线上的数字有0和1组成,其他值都为0. 因此有

math?formula=2%5E7%20 = 128 个。

2.已知集合A={a,b,c,d}上的两个关系

math?formula=R_%7B1%7D%20={,,},

math?formula=R_%7B2%7D%20={,,,}.则

math?formula=R_%7B2%7D%5E2%20= {,,,} ,

math?formula=R_%7B2%7D%5Ccirc%20R%20_%7B1%7D%20={,,}

解析: 该题用矩阵的方法最简单,矩阵乘法就能解决,答案已经在题中斜体字部分。根据公式

math?formula=M%EF%BC%88R_%7B2%7D%5Ccirc%20R%20_%7B1%7D%EF%BC%89%20%20%3D%20%20M%EF%BC%88R%20_%7B1%7D%EF%BC%89%20%20*%20M%EF%BC%88%20R%20_%7B2%7D%EF%BC%89%20%20代入矩阵,用矩阵乘法可得,如下图所示。

c0fd1b82548a

矩阵乘法

3. 一个商店提供了3种不同的钢笔, 假设顾客小王进店时, 每种钢笔至少有5支.则小王选5支钢笔的方式有( 21 )种.

解析: 用S是有k种类型对象的多重集合,每种元素具有无限的重复数,那么S的r组合的个数为

math?formula=C_%7B(r%2Bk-1%2Cr)%7D%20,因此本题的答案为

math?formula=C_%7B(7%2C5)%7D%20 =

math?formula=C_%7B(7%2C2)%7D%20 = 21。

4.设Km,n是两部分分别有m和n个顶点的完全二部图, 则Km,n的着色数是(2)

解析: 【定理一】图G是2-可着色的当且仅当G是二部图; 因此可知该二部图的着色数位为2。

【定理二】奇圈和奇数阶轮图都是3-色图,而偶数阶轮图都是4-色图。

5.设树T的顶点集合为V={v1, v2, ..., vn}, T的平均度为

math?formula=D%3D%5Cfrac%7B1%7D%7Bn%7D%20%5Csum%5Cnolimits_%7Bi%3D1%7D%5Env_%7Bi%7D%20,请用D表示出树T的顶点个数n=(2/(2-D) )

解析: 由平均度D可知该树的总度数为 nD, 而树的顶点数n与边数k的关系为 k = n-1, 则有 k = nD/2, 因此有等式 nD/2 = n-1,化简得 n = 2/(2-D) .

三、计算题

1.个体域为{a,b,c},将下列公式写成命题逻辑公式

math?formula=(%5Cforall%20x)%20P_%7B(x)%7D%20%5Crightarrow%20%20(%5Cexists%20%20y)%20Q_%7B(y)%7D

解析:个体域{a,b,c} 对于逻辑命题量词

math?formula=%5Cforall%20x 即是个体域做合取计算, 而

math?formula=%5Cexists%20y 则是对个体域做析取运算。因此得

math?formula=P_%7Ba%7D%20%5Cland%20P_%7Bb%7D%20%5Cland%20P_%7Bc%7D%20%20%5Crightarrow%20%20Q_%7Ba%7D%20%5Clor%20Q_%7Bb%7D%20%5Clor%20Q_%7Bc%7D%20

2. 计算下式的主析取范式和主合取范式

math?formula=(%E2%94%90%20P%20%5Clor%20%20Q)%20%5Crightarrow%20(Q%20%5Cland%20%E2%94%90%20R),写出求解步骤,结果用极小项和极大项数字表示简洁形式。

解析: 该题有两种方法可解,一种是利用真值表,一种是公式转换。

方法一:先用真值表来解题:

c0fd1b82548a

真值表图

则主析取范式为

math?formula=(%E2%94%90%20P%20%5Clor%20%20Q)%20%5Crightarrow%20(Q%20%5Cland%20%E2%94%90%20R)%20%5CLeftrightarrow%20%20m_%7B2%7D%5Clor%20%20m_%7B4%7D%5Clor%20%20m_%7B5%7D%5Clor%20%20m_%7B6%7D

主合取范式为

math?formula=(%E2%94%90%20P%20%5Clor%20%20Q)%20%5Crightarrow%20(Q%20%5Cland%20%E2%94%90%20R)%20%5CLeftrightarrow%20%20M_%7B0%7D%5Cland%20%20%20M_%7B1%7D%5Cland%20%20M_%7B3%7D%5Cland%20%20M_%7B7%7D

方法二:公式推导

math?formula=(%E2%94%90%20P%20%5Clor%20%20Q)%20%5Crightarrow%20(Q%20%5Cland%20%E2%94%90%20R)%20%5CLeftrightarrow%20%E2%94%90(%E2%94%90%20P%20%5Clor%20%20Q)%20%5Clor%20(Q%20%5Cland%20%E2%94%90%20R)%20

math?formula=%5CLeftrightarrow%20(P%20%5Cland%20%E2%94%90%20Q)%20%5Clor%20(Q%20%5Cland%20%E2%94%90%20R)%20

math?formula=%5CLeftrightarrow%20((P%20%5Cland%20%E2%94%90%20Q)%20%5Cland%20(R%20%5Clor%20%E2%94%90R)%20)%5Clor%20((P%20%5Clor%20%E2%94%90P)%20%5Cland(Q%20%5Cland%20%E2%94%90%20R))%20

math?formula=%5CLeftrightarrow%20((P%20%5Cland%20%E2%94%90%20Q%20%5Cland%20R)%20%5Clor%20(P%20%5Cland%20%E2%94%90%20Q%20%5Cland%20%E2%94%90R)%20)%5Clor%20((P%20%5Cland%20Q%20%5Cland%20%E2%94%90%20R)%20%5Clor%20(%E2%94%90P%20%5Cland%20Q%20%5Cland%20%E2%94%90%20R))%20

math?formula=%5CLeftrightarrow%20(P%20%5Cland%20%E2%94%90%20Q%20%5Cland%20R)%20%5Clor%20(P%20%5Cland%20%E2%94%90%20Q%20%5Cland%20%E2%94%90R)%20%5Clor%20(P%20%5Cland%20Q%20%5Cland%20%E2%94%90%20R)%20%5Clor%20(%E2%94%90P%20%5Cland%20Q%20%5Cland%20%E2%94%90%20R)%20

得主析取范式为

math?formula=m_%7B(101)%7D%20%5Clor%20m_%7B(100)%7D%5Clor%20m_%7B(110)%7D%5Clor%20m_%7B(010)%7D%20

math?formula=m_%7B2%7D%20%5Clor%20m_%7B4%7D%5Clor%20m_%7B5%7D%5Clor%20m_%7B6%7D%20

因此主合取范式为

math?formula=M_%7B0%7D%20%5Cland%20M_%7B1%7D%5Cland%20M_%7B3%7D%5Cland%20M_%7B7%7D%20

四、解答题

1. 写出集合A上的一种关系,它既是等价关系,又是偏序关系,并简要说明这种关系的特点。

解析:设集合A={a,b,c}, 等价关系满足的条件是:自反,对称,传递;而满足偏序关系的条件是:自反,反对称,传递。条件中A的关系R需满足等价和偏序关系,也就是R必须满足既是对称又是反对称关系。则 R = {| x=y}即关系矩阵对角线上的数都为1,因此该关系为集合A上的每个元素自成环,无其他关系路径。

2.求满足递推关系

math?formula=h_%7Bn%7D%20%3D%20%20h_%7Bn-1%7D%20%2B%209h_%7Bn-2%7D%20-%209h_%7Bn-3%7D

math?formula=h_%7Bn%7D的表达式,其中

math?formula=n%5Cgeq%203,初始条件

math?formula=h_%7B0%7D%20%3D%200%EF%BC%8Ch_%7B1%7D%20%3D%201%EF%BC%8Ch_%7B2%7D%3D2

解析:本题考的是常系数齐次递推关系。题中原式转化成

math?formula=h_%7Bn%7D%20-%20%20h_%7Bn-1%7D%20-%209h_%7Bn-2%7D%20%2B%209h_%7Bn-3%7D%20%3D%200,因此该式特征方程为

math?formula=q%5E3%20%20-%20%20q%5E2%20-%209q%20%2B%209%20%3D%200

math?formula=q%5E2%EF%BC%88q%20%20-%20%201%EF%BC%89%20-%209%EF%BC%88q%20-%201%EF%BC%89%20%3D%200 

math?formula=%5CRightarrow%20

math?formula=%EF%BC%88q%5E2-9%EF%BC%89%EF%BC%88q%20%20-%20%201%EF%BC%89%20%3D%200。得到特征根

math?formula=q_%7B1%7D%20%3D-3%EF%BC%8Cq_%7B2%7D%20%3D3%EF%BC%8Cq_%7B3%7D%20%3D1。三个特征无重根,则该

math?formula=h_%7Bn%7D%20的一般解为:

math?formula=H_%7Bn%7D%20%3D%20C_%7B1%7Dq_%7B1%7D%5En%20%2B%20C_%7B2%7Dq_%7B2%7D%5En%20%2B%20C_%7B3%7Dq_%7B3%7D%5En把三个特征根代入式子中可得 

math?formula=H_%7Bn%7D%20%3D%20C_%7B1%7D%EF%BC%88-3%EF%BC%89%5En%20%2B%20C_%7B2%7D%EF%BC%883%EF%BC%89%5En%20%2B%20C_%7B3%7D%EF%BC%881%EF%BC%89%5En%20%3D%20C_%7B1%7D%EF%BC%88-3%EF%BC%89%5En%20%2B%20C_%7B2%7D3%5En%20%2B%20C_%7B3%7D。把

math?formula=h_%7B0%7D%20%3D%200%EF%BC%8Ch_%7B1%7D%20%3D%201%EF%BC%8Ch_%7B2%7D%3D2代入

math?formula=H_%7Bn%7D%20 得到三个等式

math?formula=H_%7B0%7D%20%3D%20C_%7B1%7D%20%2B%20C_%7B2%7D%20%2B%20C_%7B3%7D%20%3D%200%20%EF%BC%9BH_%7B1%7D%20%3D%20-3C_%7B1%7D%20%2B3%20C_%7B2%7D%20%2B%20C_%7B3%7D%20%3D%201%EF%BC%9B%20H_%7B2%7D%20%3D%209C_%7B1%7D%20%2B9%20C_%7B2%7D%20%2B%20C_%7B3%7D%20%3D%202.

解这三个三元一次方程组得 :

math?formula=C_%7B1%7D%20%3D%20-%20%5Cfrac%7B1%7D%7B12%7D%20%EF%BC%8C%20C_%7B2%7D%20%3D%20%5Cfrac%7B1%7D%20%7B3%7D%20%EF%BC%8C%20C_%7B3%7D%20%3D%20-%5Cfrac%7B1%7D%20%7B4%7D%20%20 代入得解 

math?formula=H_n%20%3D%20%20-%5Cfrac%7B1%7D%7B12%7D%20*(-3)%5En%20%2B%20%5Cfrac%7B1%7D%7B3%7D*%203%5En%20-%5Cfrac%7B1%7D%7B4%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D*%20(-3)%20%5E%20%7B%20(n-1)%7D%20%2B%203%5E%7B(n-1)%7D%20-%20%5Cfrac%7B1%7D%7B4%7D

3. 设序列

math?formula=%5C%7Ba_%7Bi%7D%5C%7D%20的母函数是

math?formula=A_%7B%EF%BC%88x%EF%BC%89%7D%20 ,序列

math?formula=%5C%7Bb_%7Bi%7D%5C%7D  的母函数是

math?formula=B_%7B%EF%BC%88x%EF%BC%89%7D%20 ,如果

math?formula=b_%7Bk%7D%20%3D%20%5Csum%5Cnolimits_%7Bi%3D0%7D%5Ek%20%20a_%7Bi%7D ,且

math?formula=B_%7B%EF%BC%88x%EF%BC%89%7D%20%3Df_%7B%EF%BC%88x%EF%BC%89%7D%20A_%7B%EF%BC%88x%EF%BC%89%7D%20 ,求

math?formula=f_%7B%EF%BC%88x%EF%BC%89%7D%20

解析:有题可知

math?formula=A_%7B%EF%BC%88x%EF%BC%89%7D%20%20%3D%20%5Csum%5Cnolimits_%7Bi%3D0%7D%5E%E2%88%9E%20%20%20a_%7Bi%7D%20x%5Ei%20  ,且

math?formula=b_%7Bk%7D%20%3D%20%5Csum%5Cnolimits_%7Bi%3D0%7D%5Ek%20%20%20a_%7Bi%7D,得

math?formula=B_%7B%EF%BC%88x%EF%BC%89%7D%20%20%3D%20%5Csum%5Cnolimits_%7Bi%3D0%7D%5E%E2%88%9E%20%20%20(%20%5Csum%5Cnolimits_%7Bj%3D0%7D%5Ei%20a_%7B%EF%BC%88j%EF%BC%89%7D%20)%20x%5Ei%20

math?formula=a_%7B0%7D%20x%5E0%20%2B%20(a_%7B0%7D%20x%5E1%2Ba_%7B1%7D%20x%5E1)%20%2B%20%20(a_%7B0%7D%20x%5E2%2Ba_%7B1%7D%20x%5E2%2Ba_%7B2%7D%20x%5E2)%20%2B%20...%2B(a_%7B0%7D%20x%5En%2Ba_%7B1%7D%20x%5En%2B...%2Ba_%7Bn%7D%20x%5En)%20%2B%20...

math?formula=%3D%20a_%7B0%7D(x%5E0%2B...%2B%20x%5En%20%2B%20....)%20%2B%20a_%7B1%7Dx((x%5E0%2B%20x%5E1%20%2B%20...%2B%20x%5En%20%2B%20...)%20%2B%20a_%7B2%7Dx%5E2%20(%20x%5E0%2B%20x%5E1%2B...%2B%20x%5En%2B%20...)%20%2B%20...

math?formula=%3D%20a_%7B0%7D%20%5Cfrac%7B1%7D%7B1-x%7D%20%20%2B%20a_%7B1%7Dx%20%5Cfrac%7B1%7D%7B1-x%7D%20%2B%20a_%7B2%7D%20x%5E2%20%20%5Cfrac%7B1%7D%7B1-x%7D%20%2B%20...%20%3D%20%3D%20%5Cfrac%7B1%7D%7B1-x%7D%20*(%20a_%7B0%7D%20%20%2B%20a_%7B1%7Dx%2B%20a_%7B2%7D%20x%5E2%20%20%2B%20...)

=

math?formula=A_%7B(x)%7D%5Cfrac%7B1%7D%7B1-x%7D%20  ,又由于

math?formula=B_%7B%EF%BC%88x%EF%BC%89%7D%20%3Df_%7B%EF%BC%88x%EF%BC%89%7D%20A_%7B%EF%BC%88x%EF%BC%89%7D%20

math?formula=f_%7B%EF%BC%88x%EF%BC%89%7D%20%3D%5Cfrac%7B1%20%7D%7B1-x%7D%20%20

五、证明题

证明下面恒等式:

math?formula=C_%7B(n%2Ck)%7D%20%2B%20C_%7B(n%2B1%2Ck)%7D%20%2B%20C_%7B(n%2B2%2Ck)%7D%20%2B...%2BC_%7B(n%2Bm%2Ck)%7D%20%3D%20C_%7B(n%2Bm%2B1%2Ck%2B1)%7D%20-C_%7B(n%2Ck%2B1)%7D%20 ,

math?formula=C_%7B(n%2Ci)%7D表示n元素中取i个组合数。

证明:证明原式

math?formula=C_%7B(n%2Ck)%7D%20%2B%20C_%7B(n%2B1%2Ck)%7D%20%2B%20C_%7B(n%2B2%2Ck)%7D%20%2B...%2BC_%7B(n%2Bm%2Ck)%7D%20%3D%20C_%7B(n%2Bm%2B1%2Ck%2B1)%7D%20-C_%7B(n%2Ck%2B1)%7D%20

math?formula=%20%5CLeftrightarrow%20%20C_%7B(n%2Ck%2B1)%7D%20%2B%20C_%7B(n%2Ck)%7D%20%2B%20C_%7B(n%2B1%2Ck)%7D%20%2B%20C_%7B(n%2B2%2Ck)%7D%20%2B...%2BC_%7B(n%2Bm%2Ck)%7D%20%3D%20C_%7B(n%2Bm%2B1%2Ck%2B1)%7D

math?formula=C_%7B(n%2Ck%2B1)%7D%20%3D%20C_%7B(n-1%2Ck)%7D%20%2B%20C_%7B(n-1%2Ck%2B1)%7D该等式恒成立,即在n个元素中取k+1个方法可以分成两个部分,一部分选择部分包含1个特定元素a,一部分选择部分一个不包含a。

因此

math?formula=C_%7B(n%2Ck%2B1)%7D%20%2B%20C_%7B(n%2Ck)%7D%20%2B%20C_%7B(n%2B1%2Ck)%7D%20%2B%20C_%7B(n%2B2%2Ck)%7D%20%2B...%2BC_%7B(n%2Bm%2Ck)%7D%20

math?formula=%3D%20C_%7B(n%2B1%2Ck%2B1)%7D%20%20%2B%20C_%7B(n%2B1%2Ck)%7D%20%2B%20C_%7B(n%2B2%2Ck)%7D%20%2B...%2BC_%7B(n%2Bm%2Ck)%7D

math?formula=%3D%20C_%7B(n%2B2%2Ck%2B1)%7D%20%2B%20C_%7B(n%2B2%2Ck)%7D%20%2B...%2BC_%7B(n%2Bm%2Ck)%7D

以此类推:

math?formula=C_%7B(n%2Ck%2B1)%7D%20%2B%20C_%7B(n%2Ck)%7D%20%2B%20C_%7B(n%2B1%2Ck)%7D%20%2B%20C_%7B(n%2B2%2Ck)%7D%20%2B...%2BC_%7B(n%2Bm%2Ck)%7D%20%20%20%3DC_%7B(n%2Bm%2B1%2Ck)%7D%20%2BC_%7B(n%2Bm%2Ck)%7D%20%3D%20C_%7B(n%2Bm%2B1%2Ck%2B1)%7D%20

math?formula=%5CLeftrightarrow%20%20C_%7B(n%2Ck)%7D%20%2B%20C_%7B(n%2B1%2Ck)%7D%20%2B%20C_%7B(n%2B2%2Ck)%7D%20%2B...%2BC_%7B(n%2Bm%2Ck)%7D%20%20%20%3D%20C_%7B(n%2Bm%2B1%2Ck%2B1)%7D%20%20-%20C_%7B(n%2Ck%2B1)%7D%20

得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值