教学研讨所选素材大多来自国家教育资源公共服务平台、人教网等权威媒体,由网友推荐,阳光备课整合,仅供各位老师学习和研究,各部分版权归原作者所有。
▍来源:网络
推荐: 数学教师必备 | 手机版《高中数学教学手册》,请收藏 研讨素材一一、教材分析
教材截图
(考虑到部分教师未有2019版课本,这里对教材截个图)
教材分析:
一、内容与内容解析
1.内容
n次方根的定义及其性质,分数指数幂的定义,有理数指数幂的定义与运算性质.
2.内容解析
教科书章引言一方面指出了章头图所蕴含的数学模型,另一方面还列举了这些数学模型的其他背景实例,从而指出本章将类比幂函数的研究方法,学习指数函数、对数函数的概念、图象和性质,并对这几类基本初等函数的变化差异进行比较,以及运用它们解决一些实际问题.
教科书章头图是良渚遗址.通过章引言,指出生物体死亡后,体内碳14的含量随着时间的变化按一定的规律衰减,引出本章将要学习的指数函数.在实际应用中,往往是先通过技术手段测出死亡生物体内碳14的含量,然后根据指数函数建立生物体内碳14的含量与死亡时间的关系,并利用对数和对数函数推算生物死亡的大致时间,从而实现考古的目的.由于死亡生物体内碳14的含量随时间连续变化,说明引进分数指数幂和无理数指数幂的必要性,并为指数函数的定义域是实数集提供了现实背景.
研究函数必先掌握运算,而数及其运算是推动数学发展的源泉和动力之一,是数学的基石.指数幂运算和对数运算是两类基本运算,对数运算与指数幂运算紧密相连,需要转化成指数幂运算,因此,熟练掌握指数幂运算是本章的基础.
指数幂运算的本质是数的自乘,把整数指数幂运算推广到有理数指数幂运算的本质就是使用新的运算符号表示根式运算和分式运算(负数指数幂运算),简而言之就是从一个符号的规定再到另一个符号的规定.只要能够准确进行两种运算符号的转化即可.而有理数指数幂这种数学运算符号表示的简洁性、运算的便捷性都优于分式和根式,这一符号的产生具有其必然性.比如:a与b的算术平均数为,几何平均数为
,可理解为运算级的上升.事实上从16世纪比利时数学家斯蒂文尝试用分数对应根式开始,历经17世纪牛顿用有理数指数幂符号表示根式,直至18世纪欧拉才明确给出定义,这一表示法才被人们普遍接受和使用.指数幂运算的发展史充分说明基于数学语言的简洁性、准确性和合理性,有理数指数幂运算符号的产生与完善是有其历史必然性的.
教科书在研究幂函数时把正方形场地的边长c关于面积S的函数记作