使用来自另一个DataFrame的非NA值就地进行修改。
在索引上对齐。没有返回值。
参数:
other:DataFrame, 或 object coercible into a DataFrame至少应有一个与原始DataFrame匹配的索引/列标签。如果传递了Series,则必须设置其name属性,并将其用作列名以与原始DataFrame对齐。
join:{‘left’}, 默认为 ‘left’仅实现左连接,保留原始对象的索引和列。
overwrite:bool, 默认为 True如何处理重叠键的非NA值:
True:使用中的值覆盖原始DataFrame的值other。
False:仅更新原始DataFrame中NA的值。
filter_func:callable(1d-array) -> bool 1d-array, 可选参数可以选择替换NA以外的值。对于应更新的值,返回True。
errors:{‘raise’, ‘ignore’}, 默认为 ‘ignore’如果‘raise’,则在DataFrame和other两者都在同一位置包含非NA数据。
在版本0.24.0中更改:从改变raise_conflict=False|True至errors=’ignore’|’raise’。
返回值:
None:方法直接更改调用对象
异常:
ValueError当errors=’raise’并且有重叠的非NA数据。
当errors也不是‘ignore’或者‘raise’
NotImplementedError如果加入!= ‘left’
例子:
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, 5, 6],
... 'C': [7, 8, 9]})
>>> df.update(new_df)
>>> df
A B
0 1 4
1 2 5
2 3 6
由于更新,DataFrame的长度不会增加,只会更新匹配的索引/列标签上的值。
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
>>> df.update(new_df)
>>> df
A B
0 a d
1 b e
2 c f
对于 Series ,必须设置其名称属性。
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
>>> df.update(new_column)
>>> df
A B
0 a d
1 b y
2 c e
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
>>> df.update(new_df)
>>> df
A B
0 a x
1 b d
2 c e
如果other包含NaN,相应的值不会在原始数据帧中更新。
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
>>> df.update(new_df)
>>> df
A B
0 1 4.0
1 2 500.0
2 3 6.0