d3力导向图增加节点_【钢结构·技术】 桁架的节点为什么可以看作铰接?

桁架是一种普遍应用的杆系结构。图7与图8就是桁架结构桥梁。所谓桁架,就是杆系结构中的每一根杆都是结构中几何单形的一条边,对于平面桁架,单形就是三角形,每一根杆都至少是一个三角形的一条边,对于空间桁架,单形就是四面体,每一根杆都至少是一个四面体的一个棱。所以如果把桁架的每一根杆都看作刚体,它们所构成的杆系是不会变形的,是十分坚固的。

桁架的历史是久远的。古罗马时代的建筑师维特鲁威(Marcus Vitruvius Pollio,生于80-70BC,逝世于15BC)所著《建筑十书》中所介绍的起重机械(图1)和攻击机械郝格托尔撞锤和龟(图2)的结构可以看作最早的桁架。桁架在建造木桥和屋架上最先见诸实用(图3)。古罗马人用桁架修建横跨多瑙河的特雷江桥的上部结构(发现于罗马的浮雕中),文艺复兴时期,意大利建筑师帕拉迪奥(Andrea Palladio,1508—1580)开始采用木桁架建桥,后来出现了华伦式、汤式、豪式等不同形式的桁架(图4-6)。19世纪五十年代之后才出现钢结构桁架。

7c07f918956c8cf090cfe9f51fa238f1.png

图1 《建筑十书》中介绍的起重装置

014fa86e683c104d6e9f20a4a40d2fd6.png

图2 郝格托尔撞锤和龟

c803b7d3d2ee9f7967b528fda4d0411f.png

图3 古罗马时代早期木结构桁架

5131cd20398a698c9c6538012724654b.png

图4 华伦式桁架(James Warren 1848获英国专利)

1bf70c34b4799cd4fee97ad75709fda2.png

图5 豪式(William Hawe 1840年设计并获专利)桁架,增加了竖直杆

d94ab641d498ed308ea508ae51392ebd.png

图6 汤式网格(Ithiel Town 于1820年获英国专利)桁架

d759524b21bed0663e32a37bc3532228.png

图7 1924年建成的上海浙江路桁架结构桥

ef4cda6cb7fd43e22236336bb0504ac6.png

图8 施工过程中的桁架桥梁

结构力学在分析桁架的各个杆的受力时,需要简化。归结起来就两条:

  • 一条是所有的外力作用在桁架的节点上;
  • 一条是桁架的所有节点都是铰接的,也就是说每一根杆可以绕节点自由转动。

这两条的实质是,桁架的每一根杆只受拉压力,不受弯矩的作用,亦即没有弯曲。

我们注意图7、图8的桁架,前一个桁架的节点是铆接的,后一个节点是焊接的,都是固接,杆与杆之间并不能相互转动。为什么在做分析的时候却能把这些节点简化为铰接的呢?这需要仔细说说。就是说,我需要估算在桁架的杆件变形时,杆件所受的弯曲程度。如果我们能够证明在任何情况下,杆件弯曲所引起的应力比拉压的应力都小许多,那么我们当然就可以略去杆件的弯曲,把桁架的节点看做铰接了。

不妨设杆的长度为l,杆的截面尺寸为a,并且a<<l,即截面尺寸比长度小一个数量级。现在我们设杆系中有一根杆受拉(或压)力,力的大小为杆的比例极限,这是在设计时,杆能够承受的比较大的力了,因为大过它,材料就会受到不可恢复的塑性变形。一般在碳钢的情形,它相当于杆伸长(或压缩)了原长的千分之一,即l/1000。还设这根杆的一端是固定的,于是另一端就移动了l/1000,于是在这一段相联接的另一根杆便产生了横向的位移。不妨假定它的横向位移就是l/1000(其实只有在另一根杆与变形的杆相互垂直时才是这样的,一般情形,横向位移要小)。

我来讨论,这另一根一端横向位移为l/1000,一端固定的杆的弯曲变形。这是一根悬臂梁。设它在固定端所受的弯矩为M,则由材料力学简单的计算可以达到位移端的横向位移应当是:

4b679ba59d547bac268e09bb4e49877c.png

这里E是材料的杨氏模量,J是截面的转动惯量。由这个式子可以求出杆固定端的弯矩M,从而得到那里最大的弯曲应力

53813f112b6e10102346a8117807e275.png

考虑到J=a⁴/12于是上式就化为

a1a3b5e7f0cea568d09cb295f0e9fd8d.png

我们既然知道受拉杆的变形是l/1000,它的应变是1/1000,所以拉压应力是E/1000,现在弯曲应力多出一个引子a/l,而且由于悬臂梁在固定端的应力是最大的,所以可知杆的弯曲应力比起拉压应力要小一个数量级。因此,在分析桁架的受力时,它各杆的弯曲应力是可以略去的。这就是为什么在分析桁架时假定节点是铰接的原因。

有一点需要附加说明的是,对于荷载都作用在节点上的假设,纯粹是为了在分析受力时没有受弯曲的杆件。如果有某一根杆外载是加在杆中间,那也很容易办,先把载荷等效地分配到临近的节点上分析桁架,然后只要对这根杆当作实际载荷与反向的等效载荷作用的梁来分析,把分析结果与桁架得到的结果相叠加就可以了。

以上对桁架所受弯曲的讨论,纯粹是从数量级上来考虑的,因为所设的条件都是不利的情况,实际情况远比所讨论中的弯曲应力要小许多。所以通常分析桁架,都可以放心地只考虑每根杆受拉力或压力就可以了。不过有时候还是需要仔细讨论桁架中杆件所受的弯曲情况的,例如在超静定结构中,有的杆变形比较大,已经超过比例极限产生了塑性变形,或者结构对变形的要求比较精密,需要考虑弯曲所引起的变形,这时候就需要考虑桁架所有杆的弯曲。这种分析的结果称为桁架的二次应力。

人们在研究自然界或人造的事物,都需要进行一定的简化,去抓住事物最主要的本质特点,这就是模型化的方法。桁架就是结构力学中最重要的一类模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值