本文约【6500】字,预计学习时间【1h】。建议在网页端查看
欢迎大家关注我的专栏(缓慢建设中)
P-Ks的数学专栏zhuanlan.zhihu.com在某些解析几何的考题中,会涉及大量的运算却只是要证明的清晰好看的结论.在正式介绍该方法前,先做一些准备工作
刚刚接触解析几何的时候,也就是学习圆与直线的时候,常常会碰到这样的题
已知求公共弦方程.
最初,我们通过计算得到两交点坐标为
,
,于是得到直线
. 可是经过大量的做题后我们发现,当我们将
的方程展开 , 得到
再将两式相减,得
, 即
, 也就是公共弦方程.
那我们来解释一下,为什么两圆方程相减之后恰恰刚好是公共弦方程.
我们设两圆交点分别为
,
. 那么对于式
式
, 当
或
时式
式
均是成立的.
于是将式
左右两边乘上
, 式
乘上
再相加,便有
当
或
时式
亦是成立的.
此时,我们令
,
有
, 即
当
或
时式
亦是成立的. 而我们知道两点确定一条直线,所以
两点都在直线
上,故式
就是公共弦方程.
以上是两个点的情况,那么对于更多两点,四个点该如何看待呢?至此,还需要再做一点准备工作
已知到两坐标轴距离相等,求点的轨迹方程.
直观看来,当
在直线
或
上时,满足题意. 可时如何用一个式子来刻画两条直线呢?
不妨设
,所以有
,两边平方得
,即
类似于上面的分析,可以做一个简单的类比
对于直线
,
就可以用
一次表示两条直线
对于平面内不共线的四点
,
,
,
, 可以得到六条直线
,
,
,
,
,
.
依次记做
这样便得到3组两条直线
同样的,我们可以将它们线性组合,比如
似乎没有什么用
但
,
,
,
,四点又恰巧在椭圆上呢?先看一道高考真题
(改编自2016山东 , 21) 已知椭圆,过动点() 的直线交轴与点, 交椭圆于,(在第一象限),且为中点,过作轴垂线交椭圆于另一点. 延长交于点.
(1)设斜率为, 证明为定值.
(2)求直线斜率的最小值
先给出参考答案的解法
(1)设() 由可得,,
(2)设,, 又,联立与得可得,. 同理,当且仅当时取等即符合题意
计算量的确吓人,那接下来来看一看第二问的另一解法
已知设并设直线那么椭圆表示为:直线与直线:直线与直线:再将它们线性组合一下有即该式对四点均成立,于是由得,代入得再代入得以下步骤同上
看似有些繁琐,可真正计算时,
式是不用列出的,只需要
式即可
再来看一道题
(改编自全国高中数学联赛复赛题江苏赛区)抛物线上四点证明该四点共圆的必要条件是
设,圆令考察项有, 再考察项有故得证
继续欣赏一题
椭圆过点作一直线交椭圆于,两点,在上方,,为椭圆左右顶点, 连接,并延长交于, 设,,斜率为,,,求
设于是有考察项,有考察项,有两式相加,有即设
最后留下几道习题
1.椭圆,为右顶点,为上顶点,一条直线与平行. 且与椭圆交于,两点. 设,斜率为,. 求证. 2.椭圆,过原点直线()交椭圆于两点,为椭圆右焦点,连接并延长交椭圆于连接,连接并延长交椭圆于,求证 直线与比值为
一点提示
1.考察项,项系数
2.设, 则斜率之比为