python 求两条曲线的交点_浅谈二次曲线系在高考及竞赛中的运用

ec90e4d06d9ab228b5e1e625aab4cee1.png

本文约【6500】字,预计学习时间【1h】。建议在网页端查看

欢迎大家关注我的专栏(缓慢建设中)

P-Ks的数学专栏​zhuanlan.zhihu.com
92f7e85dc911e6b7de5588a3059c72f1.png

在某些解析几何的考题中,会涉及大量的运算却只是要证明的清晰好看的结论.在正式介绍该方法前,先做一些准备工作

刚刚接触解析几何的时候,也就是学习圆与直线的时候,常常会碰到这样的题

已知
公共弦方程.

b6105a39593be2d117c4ec6ffc355866.png

最初,我们通过计算得到两交点坐标为

,
,于是得到直线
. 可是经过大量的做题后我们发现,当我们将
的方程展开 , 得到

再将两式相减,得

, 即
, 也就是公共弦方程.

那我们来解释一下,为什么两圆方程相减之后恰恰刚好是公共弦方程.

我们设两圆交点分别为

,
. 那么对于式
, 当
时式
均是成立的.

于是将式

左右两边乘上
, 式
乘上
再相加,便有

时式
亦是成立的.

此时,我们令

,
, 即

时式
亦是成立的. 而我们知道两点确定一条直线,所以
两点都在直线
上,故式
就是公共弦方程.

以上是两个点的情况,那么对于更多两点,四个点该如何看待呢?至此,还需要再做一点准备工作

已知
到两坐标轴距离相等,求
点的轨迹方程.

直观看来,当

在直线
上时,满足题意. 可时如何用一个式子来刻画两条直线呢?

不妨设

,所以有
,两边平方得
,即

类似于上面的分析,可以做一个简单的类比

对于直线

,
就可以用

一次表示两条直线

对于平面内不共线的四点

,
,
,
, 可以得到六条直线
,
,
,
,
,
.

依次记做

这样便得到3组两条直线

同样的,我们可以将它们线性组合,比如

似乎没有什么用

,
,
,
,四点又恰巧在椭圆上呢?先看一道高考真题
(改编自2016山东 , 21) 已知椭圆
,过动点
(
) 的直线交
轴与点
, 交椭圆
,
(
在第一象限),且
中点,过
轴垂线交椭圆
于另一点
. 延长
于点
.

(1)设
斜率为
, 证明
为定值.

(2)求直线
斜率的最小值

304901013c04dcb36c2d0bcd10123a6c.png

先给出参考答案的解法

(1)设
(
) 由
可得
,
,

(2)设
,
, 又
,
联立
可得
,
. 同理
,
当且仅当
时取等
符合题意

计算量的确吓人,那接下来来看一看第二问的另一解法

已知
并设直线
那么椭圆表示为:
直线
与直线
直线
与直线
再将它们线性组合一下有
该式对
四点均成立,于是
,代入
再代入
以下步骤同上

看似有些繁琐,可真正计算时,

式是不用列出的,只需要
式即可

再来看一道题

(改编自全国高中数学联赛复赛题江苏赛区)抛物线
上四点
证明该四点共圆的必要条件是

a2e54c4449bc4fa1712582d442f26089.png
,
考察
项有
, 再考察
项有
得证

继续欣赏一题

椭圆
点作一直线交椭圆于
,
两点,
上方,
,
为椭圆左右顶点, 连接
,
并延长交于
, 设
,
,
斜率为
,
,
,求

edeebd4a4f2f2050e21bcf3dc16f82cb.png
于是有
考察
项,有
考察
项,有
两式相加,有

最后留下几道习题

1.椭圆
为右顶点,
为上顶点,一条直线与
平行. 且与椭圆交于
,
两点. 设
,
斜率为
,
. 求证
. 2.椭圆
,过原点直线
(
)交椭圆于
两点,
为椭圆右焦点,连接
并延长交椭圆于
连接,连接
并延长交椭圆于
,求证 直线
比值为

一点提示

1.考察
项,
项系数

2.设
, 则斜率之比为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值