java fork join原理_Java7中的ForkJoin并发框架初探(下)—— ForkJoin的应用

前两篇文章已经对Fork Join的设计和JDK中源码的简要分析。这篇文章,我们来简单地看看我们在开发中怎么对JDK提供的工具类进行应用,以提高我们的需求处理效率。

Fork Join这东西确实用好了能给我们的任务处理提高效率,也为开发带来方便。但Fork Join不是那么容易用好的,我们先来看几个例子(反例)。

####1. 反例错误分析

我们先来看看这篇文章中提供的例子:http://www.iteye.com/topic/643724 (因为是反例,就不提供超链接了,只以普通文本给出URL)

这篇文章是我学习和整理Fork Join时搜索到的一篇文章,其实总的来说这篇文章前面分析得还是比较好的,只是给出的第一个例子(有返回结果的RecursiveTask应用的例子)没有正确地对Fork Join进行应用。为了方便分析,还是贴下这个例子中具体的的代码吧。

public class Calculator extends RecursiveTask {

private static final int THRESHOLD = 100;

private int start;

private int end;

public Calculator(int start, int end) {

this.start = start;

this.end = end;

}

@Override

protected Integer compute() {

int sum = 0;

if((start - end) < THRESHOLD){

for(int i = start; i< end;i++){

sum += i;

}

}else{

int middle = (start + end) /2;

Calculator left = new Calculator(start, middle);

Calculator right = new Calculator(middle + 1, end);

// 下三行高亮, 哈`

left.fork();

right.fork();

sum = left.join() + right.join();

}

return sum;

}

}

我们看到其中一段已经高亮的代码,显示对两个子任务进行fork()调用,即分别提交给当前线程的任务队列,依次加到末尾。紧接着,又按照调用fork()的顺序执行两个子任务对象的join()方法。

其实,这样就有一个问题,在每次迭代中,第一个子任务会被放到线程队列的倒数第二个位置,第二个子任务是最后一个位置。当执行join()调用的时候,由于第一个子任务不在队列尾而不能通过执行ForkJoinWorkerThread的unpushTask()方法取出任务并执行,线程最终只能挂起阻塞,等待通知。而Fork Join本来的做法是想通过子任务的合理划分,避免过多的阻塞情况出现。这样,这个例子中的操作就违背了Fork Join的初衷,每次子任务的迭代,线程都会因为第一个子任务的join()而阻塞,加大了代码运行的成本,提高了资源开销,不利于提高程序性能。

除此之外,这段程序还是不能进入Fork Join的过程,因为还有一个低级错误。看下第15、16行代码的条件,就清楚了。按照逻辑,start必然是比end小的。这将导致所有任务都将以循环累加的方式完成,而不会执行fork()和join()。

由此可见,Fork Join的使用还是要注意对其本身的理解和对开发过程中细节的把握的。我们看下JDK中RecursiveAction和RecursiveTask这两个类。

####2. RecursiveAction分析及应用实例

这两个类都是继承了ForkJoinTask,本身给出的实现逻辑并不多不复杂,在JDK的类文件中,它的注释比源码还要多。我们可以看下它的实现代码。

public abstract class RecursiveAction extends ForkJoinTask {

private static final long serialVersionUID = 5232453952276485070L;

protected abstract void compute();

public final Void getRawResult() { return null; }

protected final void setRawResult(Void mustBeNull) { }

protected final boolean exec() {

compute();

return true;

}

}

我们看到其中两个方法是关于处理空返回值的方法。而exec方法则是调用了compute(),这个compute就是我们使用Fork Join时需要自己实现的逻辑。

我们可以看下API中给出的一个最简单最具体的例子:

class IncrementTask extends RecursiveAction {

final long[] array; final int lo; final int hi;

IncrementTask(long[] array, int lo, int hi) {

this.array = array; this.lo = lo; this.hi = hi;

}

protected void compute() {

if (hi - lo < THRESHOLD) {

for (int i = lo; i < hi; ++i)

array[i]++;

}

else {

int mid = (lo + hi) >>> 1;

invokeAll(new IncrementTask(array, lo, mid),

new IncrementTask(array, mid, hi));

}

}

}

大致的逻辑就是,对给定一个特定数组的某段,进行逐个加1的操作。我们看到else中的代码块,显示取一个lo和hi的中间值,此后分割成两个子任务,并进行invokeAll()调用。我们来看下继承自FutureTask的invokeAll()方法实现。很简单:

public static void invokeAll(ForkJoinTask> t1, ForkJoinTask> t2) {

t2.fork();

t1.invoke();

t2.join();

}

对于参数中的两个子任务,对第二个子任务进行fork(),即放入线程对应队列的结尾,然后执行第一个子任务,再调用第二个子任务的join(),实际上就是跳转到第二个子任务,进行执行(当然如果不能执行,就需要阻塞等待了)。

其实invokeAll()是个重载方法,同名的还有另外两个,基本逻辑都是一样的,我们拿出一个通用一点的来看一下:

public static void invokeAll(ForkJoinTask>... tasks) {

Throwable ex = null;

int last = tasks.length - 1;

for (int i = last; i >= 0; --i) {

ForkJoinTask> t = tasks[i];

if (t == null) {

if (ex == null)

ex = new NullPointerException();

}

else if (i != 0)

t.fork();

else if (t.doInvoke() < NORMAL && ex == null)

ex = t.getException();

}

for (int i = 1; i <= last; ++i) {

ForkJoinTask> t = tasks[i];

if (t != null) {

if (ex != null)

t.cancel(false);

else if (t.doJoin() < NORMAL && ex == null)

ex = t.getException();

}

}

if (ex != null)

UNSAFE.throwException(ex);

}

我们发现第一个子任务(i==0的情况)没有进行fork,而是直接执行,其余的统统先调用fork()放入任务队列,之后再逐一join()。其实我们注意到一个要点就是第一个任务不要fork()再join(),也就是上面中例子的错误所在,这样会造成阻塞,而不能充分利用Fork Join的特点,也就不能保证任务执行的性能。

Oracle的JavaSE7 API中在RecursiveAction里还有一个更复杂的例子,是计算double数组平方和的,由于代码较长,就不列在这里了。总体思路和上面是一样的,额外增加了动态阈值的判断,感兴趣的想深入理解的可以到这里去参考一下。 http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/RecursiveAction.html

####3. RecursiveTask简要说明

其实说完了RecursiveAction,RecursiveTask可以用“同理”来解释。实现代码也很简单:

public abstract class RecursiveTask extends ForkJoinTask {

private static final long serialVersionUID = 5232453952276485270L;

V result;

protected abstract V compute();

public final V getRawResult() {

return result;

}

protected final void setRawResult(V value) {

result = value;

}

protected final boolean exec() {

result = compute();

return true;

}

}

我们看到唯一不同的是返回结果的处理,其余都可以和RecursiveAction一样使用。

####4. Fork Join应用小结

Fork Join是为我们提供了一个非常好的“分而治之”思想的实现平台,并且在一定程度上实现了“变串行并发为并行”。但Fork Join不是万能的页不完全是通用的,对于可很好分解成子任务的场景,我们可以对其进行应用,更多时候要考虑需求和应用场景,并且注意其使用要点才行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值