二次函数背景下的四边形面积最值问题是近年来各省市中考数学的热点问题,一些学生对此类问题求解很困惑,甚至毫无招数,其实这类问题常用解题思路是将四边形的面积最值问题一般转化为二次函数的最值问题;常用解题方法是利用割补法将四边形的面积表示出来。
拆解四边形
如何求一个普通的四边形的面积?
解法也很普通,连对角线分割为两个三角形即可求得面积.至于三角形面积参考前文铅垂法.
搞定了四边形的面积表达方式,就可以进一步求四边形面积的最值了。
典型考题
1.(2019东营中考题,有删减)已知抛物线y=ax²+bx-4经过点A(2,0)、B(-4,0),与y轴交于点C.
(1)求这条抛物线的解析式;
(2)如图,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;
【解析】(1)y=0.5x²+x-4;
(2)此处四边形ABPC并非特殊四边形,所以可以考虑连接对角线将四边形拆为两个三角形求面积.
若连接AP,则△ABP和△APC均为动三角形,非最佳选择;
若连接BC,可得定△ABC和动△BPC,只要△BPC面积最大,四边形ABPC的面积便最大.
考虑A(2,0)、B(-4,0)、C(0,-4),
接下来求△BPC的面积,设P点坐标为(m,0.5m²+m-4),连接BC,则直线BC的解析式为:y=-x-4,
过点P作PQ⊥x轴交BC于点Q,则Q点坐标为(m,-m-4),
当m=-2时,PQ取到最大值2,此时△BPC面积最大,四边形ABPC面积最大.此时P点坐标为(-2,-4).
2.(2019枣庄中考题,有删减)已知抛物线y=ax²+1.5x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.
(1)求抛物线的解析式和A,B两点的坐标;
(2)如图,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;
【解析】(1)抛物线解析式为
点A坐标为(-2,0),点B坐标为(8,0).
(2)显然将四边形PBOC拆为△BOC和△PBC,点C坐标为(0,4),
设P点坐标为
根据B、C坐标可得BC的解析式为y=-0.5x+4,过点P作PQ⊥x轴交BC于点Q,则Q点坐标为(m,-0.5m+4),
当m=4时,PQ取到最大值4,
故四边形PBOC的最大面积为32,此时P点坐标为(4,6).
3.(2019相城区一模)如图,抛物线y=ax²-3ax-4a(a<0)与x轴交于A,B两点,直线y=1/2x+1/2经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ=1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.
(1)求抛物线的解析式;
(2)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.
【解析】(1)由题意得C点坐标为(3,2),代入抛物线解析式得:a=-1/2,
抛物线解析式为:
(2)注意题目的描述:线段PQ在线段AB上移动,故四边形可能在C点左侧,可能在C点右侧,可能横跨C点.
显然四边形面积的最大值存在于第一种情况.
当四边形在点C左侧时,
当m=1/2时,FG+DE取到最大值为15/4,此时四边形面积为15/8.故最大面积为15/8.
方法总结
分割四边形,设动点P的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点式,求出四边形面积的最大值。