python知识图谱问答系统代码_问答系统 - osc_xopfh3w8的个人空间 - OSCHINA - 中文开源技术交流社区...

问答系统分为闲聊、问答和任务型对话,其中知识图谱问答依赖于结构化的知识图谱,但构建成本高。开放域问答系统受限于问题类型,而基于阅读理解的问答系统通过非结构化文本处理提供解决方案。构建问答系统涉及机器学习、NLP和信息检索技术,开源问答系统如OSQA、Askbot和WeCenter提供了基础平台。
摘要由CSDN通过智能技术生成

对话系统包括闲聊、问答、任务型对话三大部分。 问答系统特指那些一问一答形式的聊天。 任务型对话指用户希望通过聊天的方式达成某种目的。 闲聊中,对话系统的输出不一定是肯定句,也可以是问句。

开放域问答系统虽然开放,但它能够解决的问题类型是有限的: 按照问题类型,又可作如下划分:

事实型问题:WH 问题,例如 when / who / where 等;

是非型问题:Is Beijing the capital of China?

对比型问题:Which city is larger, Shanghai or Beijing?

观点型问题:What is Chinese opinion about Donald Trump?

原因/结果型问题:how / why / what 等。

特定领域的问答系统的构建通常使用知识图谱的方式。知识图谱的基本组成就是三元组,知识图谱的工具体系包括:知识图谱编辑工具、知识图谱查询工具。 知识图谱问答最大的缺点是它需要构建知识图谱,问答系统不具备可迁移性,不同领域需要整理不同的知识,这是工作量最大的部分。并且,知识图谱的整理需要专家知识,这项工作无论交给程序员来做还是交给业务方来做都是一项艰难的工作。知识图谱问答的优点在于它简单直接、可解释性强、可以执行高阶逻辑查询。

基于阅读理解的问答系统一定程度上可以认为是专门为了解决知识图谱问答存在的问题。知识图谱中存储的知识是高度结构化的,这和实际生活并不符合。许多文章很难提炼出知识结构来。基于阅读理解的问答系统知识的存储形式就是非结构化的文本片段。基于阅读理解的问答系统有两类:抽取式和检索式。

要构建一个自动问答系统,应从哪些方面入手?(来自知乎)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值