spotify电脑下载歌曲_Spotify开源Klio, 音频处理从业者的福音来了

在第21届计算机音乐顶会上,Spotify公开了其AI音频研究框架Klio,该框架基于ApacheBean并行处理技术,极大地简化了音频数据集处理流程,提升了音频开发人员和研究人员的工作效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

26a7587d65c75c68028840e1d96c829c.gif

From: Venture Beat; 编译: Shelly

在第21届计算机音乐顶会ISMIR上,流媒体音乐服务平台Spotify开放了其AI音讯研究框架Klio的资源。Spotify工程师们分享的Klio Python框架,运用了Apache Bean并行处理大型数据集上的音频处理算法。

这次的开源简化了广大音频开发人员和研究人员的工作,为无数音频从业者提供了更干净的数据集,不失为一次业内福音!

394e777274ebee21e792f306a55bffcc.gif

2003年,乔布斯打造的iTunes横空出世,扫清音乐盗版的乱象,很快确立了音乐流媒体平台的霸主地位。

在iTunes问世3年,售出了10亿首歌曲后,Spotify的两位创始人凭一己之力撕开了数字音乐的缺口,打败了曾经的行业龙头。

Spotify成为了新一代音乐流媒体的巨头。

6b67b388186fb3fb2da1f76abf92dd54.png

Spotify创始人丹尼尔·埃克和马丁·洛伦松

近日,在第21届计算机音乐顶会ISMIR (International Society for Music Information Retrieval Conference) 上,ISMIR一如既往收到了很多赞助。

其中不乏我们熟悉的,今年的白金赞助商Spotify,黄金赞助商字节跳动和Adobe。而前几年大力支持的QQ音乐今年却销声匿迹了......

在众星云集的音乐流媒体盛会中,Spotify开放了其AI音讯研究框架Klio的资源,音频处理从业者有福啦!

流水不争先,争滔滔不绝

正如华为的鸿蒙系统让无数研究员热泪盈眶,其原因不仅在于它是人类有史以来第4大代码量的移动操作系统,更在于它期望为全人类设计未来二十年ecosystem蓝图的赤诚之心。

f5482701ca43e7bea00e872af6544339.png

尽管Klio与鸿蒙系统的愿景直观对比不尽相同,但我们相信Klio的开源在带来福音的同时,也让无数音频从业者欣喜若狂。

简单来讲,Spotify 作为大型音乐串流平台,除了为用户提供音乐播放、下载和建议的服务,背后也有音讯处理的系统。

ddeca88f7b0a8a0068240263356c6bba.png

Klio正是这个止步于幕后、全力支持Spotify的 AI 音讯研究框架,是一个允许研究者轻松、大规模地处理音频文件或任何二进制文件的生态系统。

Spotify用它来运行大规模音频智能操作处理,Spotify的工程师和音频处理员也用它来帮助开发和部署下一代音频算法。

不再秃头,Klio助力大型音频数据集处理

反复使用和协调执行产生大量音频数据集的算法十分复杂,也常让音频处理人员苦恼。

“过去我们的模型遇到了一些挑战” 辛格说,“来自程序员的反馈都不是积极的。对他们来说,在目前的模型下要想达到预期的结果需要花很长时间。这也间接导致了他们的工作不高产。”

而这次Spotify工程师们分享的Klio Python框架使用了Apache Bean并行处理大型数据集上的音频处理算法。Klio使用者能够创建媒体处理系统,从而在运行系统和研究团队之间共享tooling和基础框架。

8441c77298e113fa4c5219062d62246a.png

Klio的设计师鼓励在平台上可重复利用的工作和分享型的内容输出,最明显的好处是降低了维护成本和复核计算成本。

不止步于此,即使媒体内容不断增加,Klio支持连续的、事件驱动的、快速增长的媒体目录。它为工程师提供了一个生产处理工作的框架,为使用者提供了一种处理摄入信息的方法。

Spotify技术副总裁泰森•辛格在接受采访时解释说,Klio基本上是一种让人们参与并为媒体构建各种更智能的数据管道的方式,让开发和研究人员能更有效的在媒体领域工作。

辛格说,Klio开启了加速Spotify向基于人工智能研究的转型。

Spotify不断创新,背后最强大的工具…

Klio的搭建于2019年初开始,它还有一个同音名叫Clio,原意是希腊历史上的缪斯女神。到了2019年秋天,Klio原型出现了,同年晚些时候,Klio帮助Spotify推出了一个功能。

8e10ee6cba25556f680265d6ca277138.png

多年来,包括Spotify的每周推荐 (Discovery Weekly) 和新歌推荐 (Release Radar) 等功能,Spotify已经开始利用自然语言处理、音频模型和过滤来提供推荐和搜索播放列表。

现在,Spotify开发人员使用Klio将搭建于内部的流水线串在一起,并配合各种API。

就在去年12月,Spotify还在日本推出了Sing Along,一个类似卡拉ok的功能。在一首歌曲加入目录的几分钟内,可以通过人工智能自动分离人声达到卡拉OK的效果。(作为参考,每天有超过6000万首歌曲被定期审核处理,其中有40,000首歌曲被添加到Spotify数据库中。)

不断优化,Klio未来可期

“虽然我们的研究人员在音乐信息检索方面非常出色,但是相比于机器学习,人耳始终略逊一筹。纷杂的音频信息中,机器 ‘听到’的实际是歌曲,并能从音频信息中深度学习,这是再优秀的研究人员也无法做到的。”牵头的工程师之一林恩·鲁特(Lynn Root)谈到。

“使用Klio,我们可以进行更多的音频处理和优化,而不需要做重复的工作。Klio还可以在其他研究的基础上进行开发。它为研究人员带来了更干净的数据集。”

目前从服务对象看,Klio主要是为具有数据科学背景的工程师和研究人员设计的。要使用核心平台的功能,需要50至60行代码,这过于冗长。鲁特和辛格表示他们正在积极提高功能路线图的可用性。

不过,一旦Klio整合完成,用户就可以通过非常简单的方式使用某些功能,比如确定歌曲节拍等。辛格说:“那些不是工程师的人也可以轻松上手,至少一个产品经理肯定能。”

开源代码:

https://github.com/spotify/klio

Re:

https://venturebeat.com/2020/10/13/spotify-open-sources-klio-a-framework-for-ai-audio-research/

https://www.newsbreak.com/news/2082022431073/spotify-introduces-a-new-music-and-spoken-word-format-open-to-all-creators

ee1e6be991a4a5417c83133907eb7115.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值