单源最短路径_C/C++ 图的最短路径 Dijkstra 算法

本文介绍了Dijkstra算法在C/C++中实现单源最短路径的方法。通过构建图并赋予边权重,从指定顶点出发,逐步找到各顶点的最短路径。文中详细解释了算法思路,并提供了代码示例和执行结果。
摘要由CSDN通过智能技术生成
作者:小石王

链接:https://www.cnblogs.com/xiaoshiwang/p/9442391.html

图的最短路径的概念:

一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线。假设途中每一站都需要换车,则这个问题反映到图上就是要找一条从顶点A到B所含边的数量最少的路径。我们只需从顶点A出发对图作广度优先遍历,一旦遇到顶点B就终止。由此所得广度优先生成树上,从根顶点A到顶点B的路径就是中转次数最少的路径。但是这只是一类最简单的图的最短路径问题。有时,对于旅客来说,可能更关心的是节省交通费用;而对于司机来说,里程和速度则是他们感兴趣的的信息。为了在图上表示相关信息,可对边赋以权值,权值可以表示两个城市之间的距离,或途中所需时间,或交通费用等等。此时路径长度的度量就不再是路径上边的数目,而是路径上边权值之和。

实现思路:
  • 创建2个辅助int*数组dist path,1个bool数组s

  • dist 存放目标顶点到每个顶点的最短距离

  • path 存放目标顶点到每个顶点的路径

  • s 被查找过的顶点设置为true,否则为false

图为下图

84245ae899dbd52c3d2fcfc702118c55.png

1、假设目标顶点为A,先从A开始找到各个顶点的权值,

ABCDE
dist010无穷大30100
path-10000
struefalsefalsefalsefalse

path含义:比如path[1]=0,就代表从下标为0的顶点(A顶点)到B顶点

2、从dist里找到s为false的最小值,也就是dist[1]的值10,下标1说明是顶点B,再从B开始找到各个顶点的权值,更新dist和path,并设置B为true

ABCDE
dist0106030100
path-10100
struetruefalsefalsefalse

3、从dist里找到s为false最小值,也就是dist[3]的值30,下标3说明是顶点D,再从D开始找到各个顶点的权值,更新dist和path,并设置D为true

ABCDE
dist010503090
path-10303
struetruefalsetruefalse

4、从dist里找到s为false最小值,也就是dist[2]的值50,下标2说明是顶点C,再从C开始找到各个顶点的权值,更新dist和path,并设置C为true

ABCDE
dist010503060
path-10302
struetruetruetruefalse

5、从dist里找到s为false最小值,也就是dist[4]的值60,下标4说明是顶点E,再从E开始找到各个顶点的权值,更新dist和path,并设置E为true

ABCDE
dist010503060
path-10302
struetruetruetruetrue

下面两幅图可以帮助理解

d09fce7384aab20ac034bc28b9651be7.png

4e11bcee388bad383428805ea998b35e.png

dijkstra.h

#ifndef __mixspantree__
#define __mixspantree__

#include 
#include 
#include 
#include 
#include 
#include 

#define Default_vertex_size 20

#define T char//dai biao ding dian de lei xing
#define E int
#define MAX_COST 0x7FFFFFFF


typedef struct GraphMtx{
  int MaxVertices;//zui da ding dian shu liang]
  int NumVertices;//shi ji ding dian shu liang
  int NumEdges;//bian de shu lian

  T* VerticesList;//ding dian list
  int** Edge;//bian de lian jie xin xi, bu shi 0 jiu shi 1
}GraphMtx;

//chu shi hua tu
void init_graph(GraphMtx* gm);
//打印二维数组
void show_graph(GraphMtx* gm);
//插入顶点
void insert_vertex(GraphMtx* gm, T v);
//添加顶点间的线
void insert_edge(GraphMtx* gm, T v1, T v2, E cost);

//最短路径
void short_path(GraphMtx* g,T v,E* dist, int* path);
#endif

dijkstra.c

#include "dijkstra.h"

void init_graph(GraphMtx* gm){
  gm->MaxVertices = Default_vertex_size;
  gm->NumEdges = gm->NumVertices = 0;

  //kai pi ding dian de nei cun kong jian
  gm->VerticesList = (T*)malloc(sizeof(T) * (gm->MaxVertices));
  assert(NULL != gm->VerticesList);

  //创建二维数组
  //让一个int的二级指针,指向一个有8个int一级指针的数组
  //开辟一个能存放gm->MaxVertices个int一级指针的内存空间
  gm->Edge = (int**)malloc(sizeof(int*) * (gm->MaxVertices));
  assert(NULL != gm->Edge);
  //开辟gm->MaxVertices组,能存放gm->MaxVertices个int的内存空间
  for(int i = 0; i MaxVertices; ++i){
    gm->Edge[i] = (int*)malloc(sizeof(int) * gm->MaxVertices);
  }
  //初始化二维数组
  //让每个顶点之间的边的关系都为不相连的
  for(int i = 0; i MaxVertices; ++i){
    for(int j = 0; j MaxVertices; ++j){
      if(i == j)
    gm->Edge[i][j] = 0;
      else
    gm->Edge[i][j] = MAX_COST;
    }
  }
}
//打印二维数组
void show_graph(GraphMtx* gm){
  printf("  ");
  for(int i = 0; i NumVertices; ++i){
    printf("%3c  ", gm->VerticesList[i]);
  }
  printf("\n");
  for(int i = 0; i NumVertices; ++i){
    //在行首,打印出顶点的名字
    printf("%c:", gm->VerticesList[i]);
    for(int j = 0; j NumVertices; ++j){
      if(gm->Edge[i][j] == MAX_COST){
    printf("%3c  ", '*');
      }
      else{
    printf("%3d  ", gm->Edge[i][j]);
      }
    }
    printf("\n");
  }
  printf("\n");
}
//插入顶点
void insert_vertex(GraphMtx* gm, T v){
  //顶点空间已满,不能再插入顶点了
  if(gm->NumVertices >= gm->MaxVertices){
    return;
  }
  gm->VerticesList[gm->NumVertices++] = v;
}

int getVertexIndex(GraphMtx* gm, T v){
  for(int i = 0; i NumVertices; ++i){
    if(gm->VerticesList[i] == v)return i;
  }
  return -1;
}
//添加顶点间的线
void insert_edge(GraphMtx* gm, T v1, T v2, E cost){
  if(v1 == v2)return;

  //查找2个顶点的下标
  int j = getVertexIndex(gm, v1);
  int k = getVertexIndex(gm, v2);
  //说明找到顶点了,并且点之间还没有线
  if(j != -1 && k != -1 ){
    //因为是有方向,所以更新1个值
    gm->Edge[j][k] = cost;
    //边数加一
    gm->NumEdges++;
  }
}

//取得2个顶点之间的权值
E getWeight(GraphMtx* g, int v1, int v2){
  if(v1 == -1 || v2 == -1) return MAX_COST;
  return g->Edge[v1][v2];
}
//最短路径
void short_path(GraphMtx* g,T v,E* dist, int* path){
  int n = g->NumVertices;
  bool* s = (bool*)malloc(sizeof(bool) * n);
  assert(NULL != s);

  int vi = getVertexIndex(g, v);
  for(int i = 0; i     //获得各个顶点与目标顶点之间的权值
    dist[i] = getWeight(g, vi, i);
    s[i] = false;
    if(i != vi && dist[i]       path[i] = vi;
    }
    else{
      path[i] = -1;
    }
  }

  s[vi] = true;
  int min;
  int w;
  for(int i = 0; i 1; ++i){
    min = MAX_COST;
    //u为最短路径顶点的下标
    int u = vi;
    for(int j = 0; j       if(!s[j] && dist[j]     u = j;
    min = dist[j];
      }
    }
    //把u加入到s集合
    s[u] = true;

    //更新下一个点到所有点的权值
    for(int k = 0; k       w = getWeight(g, u, k);
      if(!s[k] && w     dist[k] = dist[u] + w;
    path[k] = u;
      }
    }
  }
}

dijkstramain.c

#include "dijkstra.h"

int main(){
  GraphMtx gm;
  //初始化图
  init_graph(&gm);
  //插入顶点
  insert_vertex(&gm, 'A');
  insert_vertex(&gm, 'B');
  insert_vertex(&gm, 'C');
  insert_vertex(&gm, 'D');
  insert_vertex(&gm, 'E');

  //添加连线
  insert_edge(&gm, 'A', 'B', 10);
  insert_edge(&gm, 'A', 'D', 30);
  insert_edge(&gm, 'A', 'E', 100);
  insert_edge(&gm, 'B', 'C', 50);
  insert_edge(&gm, 'C', 'E', 10);
  insert_edge(&gm, 'D', 'C', 20);
  insert_edge(&gm, 'D', 'E', 60);
  //打印图
  show_graph(&gm);

  int n = gm.NumVertices;
  E* dist = (E*)malloc(sizeof(E) * n);
  int* path = (int*)malloc(sizeof(int) * n);
  assert(NULL != dist && NULL != path);

  //最短路径
  short_path(&gm, 'A', dist, path);

}

完整代码

https://github.com/yuebaixiao/Data-Struct/tree/master/dijkstra

编译方法:gcc -g dijkstra.c dijkstramain.c


执行结果如下图:2072c7bf55936ae29dcf02eadd5d5353.png


●编号495,输入编号直达本文

●输入m获取文章目录

C语言与C++编程

6682d80b3bc67adc0956e2a04856ae9b.png

分享C/C++技术文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值