canvas内部元素不能像DOM元素一样方便的添加交互事件监听,因为canvas内不存在“元素”这个概念,他们仅仅是canvas绘制出来的图形。这对于交互开发来说是一个必经障碍,想要监听图形的点击事件思路很简单,只要监听canvas元素本身的点击事件,再判断点击坐标位于哪一个图形内部,就变相实现了图形点击事件。本文将介绍三种方法,判断坐标点是否位于某个canvas图形内部。
约定
本文介绍的三种方法适用于识别canvas内形状不规则而且位置无规律的图形点击事件,对于形状规则或者位置有规律的场景,肯定有更简便的实现,这里不做讨论。
像素法
像素检测法的思路是,将canvas中的多个图形(如果有多个的话)分别离屏绘制,并用getImageData()方法分别获取到像素数据保存起来。当canvas元素监听到点击事件时,通过点击坐标可以直接推算出点击发生在canvas上的第几个像素,然后遍历前面保存的图形数据,看看这个像素的alpha值是不是0,如果是0说明落点不在当前图形内,否则就说明点到了这个图形。
根据点击坐标得到所点击的像素序号的方法:
1像素序号 = (纵坐标-1) * canvas宽度 + 横坐标
比如在宽度为 5 的画布上点击坐标(3,3),根据上述公式得到像素序号是(3-1) * 5 + 3 = 13,如图所示:
因为canvas导出的图形数据是将每个像素以rgba的顺序存成4个数字组成的数组,所以想访问指定像素的alpha值,只要读取这个数组的第pIndex * 4 + 3个值就可以了,如果这个值不为0,说明该像素可见,也就是点击到了该图形。
这个方法是我认为思路最直接、结果最准确、而且对图形形状没有任何要求的方法,但这个方法有一个致命的局限,当图形需要在画布上移动时,要频繁的创建数据缓存才能保证检测结果准确,受到画布尺寸和图形数量的影响,getImageData()方法的性能会成为严重的瓶颈。所以如果canvas图形是静态的,这个方法非常适合,否则就不适合用这个方法了。
角度法
角度判断法的原理很容易理解,如果一个点在多边形内部,则该点与多边形所有顶点两两构成的夹角,相加应该刚好等于360°。
计算过程可以转变为以下三个步骤:
已知多边形顶点和已知坐标,将坐标与顶点两两组合成三点队列
已知三点求夹角,可以使用余玄定理
判断夹角之和是否360°
每一步都很简单,实现如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37//计算两点距离
const getDistence = function (p1, p2) {
return Math.sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y))
};
//角度法判断点在多边形内部
const checkPointInPolyline = (point, polylinePoints) => {
let totalA = 0;
const A = point;
for (let i = 0; i < polylinePoints.length; i++) {
let B, C;
if (i === polylinePoints.length - 1) {
B = {
x: polylinePoints[i][0],
y: polylinePoints[i][1]
};
C = {
x: polylinePoints[0][0],
y: polylinePoints[0][1]
};
} else {
B = {
x: polylinePoints[i][0],
y: polylinePoints[i][1]
};
C = {
x: polylinePoints[i + 1][0],
y: polylinePoints[i + 1][1]
};
}
//计算角度
const angleA = Math.acos((Math.pow(getDistence(A, C), 2) + Math.pow(getDistence(A, B), 2) - Math.pow(getDistence(B, C), 2)) / (2 * getDistence(A, C) * getDistence(A, B)))
totalA += angleA
}
//判断角度之和
return totalA === 2 * Math.PI
}
这个方法有一个局限性,就是图形必须是凸多边形。如果不是凸多边形需要先切割成凸多边形再计算,这就比较复杂了。
类似的思路还有面积法,如果一个点在多边形内部,那么该点与多边形所有顶点两两构成的三角形,面积相加应该等于多边形的面积,首先计算多边形的面积就很麻烦,所以这种方法可以直接pass掉。
射线法
射线法是一个我讲不清道理但非常好用的方法,只要判断点与多边形一侧的交点个数为奇数,则点在多边形内部。需要注意的是,只要数任何一侧的焦点个数就可以,比如左侧。这个方法不限制多边形的类型,凸多边形、凹多边形甚至环形都可以。
实现起来也非常简单:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36const checkPointInPolyline = (point, polylinePoints) => {
//射线法
let leftSide = 0;
const A = point;
for (let i = 0; i < polylinePoints.length; i++) {
let B, C;
if (i === polylinePoints.length - 1) {
B = {
x: polylinePoints[i][0],
y: polylinePoints[i][1]
};
C = {
x: polylinePoints[0][0],
y: polylinePoints[0][1]
};
} else {
B = {
x: polylinePoints[i][0],
y: polylinePoints[i][1]
};
C = {
x: polylinePoints[i + 1][0],
y: polylinePoints[i + 1][1]
};
}
//判断左侧相交
let sortByY = [B.y, C.y].sort((a,b) => a-b)
if (sortByY[0] < A.y && sortByY[1] > A.y){
if(B.x
leftSide++
}
}
}
return leftSide % 2 === 1
}
射线法有一种特殊情况,当点在多变形的一条边上时需要特殊处理。但在工程中我认为也可以不处理,因为如果用户刚好点在图形的边界上,那么程序认为他没有点到也讲的过去。
总结
以上三种方法都可以实现canvas中不规则图形的点击检测。其中,像素法的优势在于不挑形状,而且在静态场景中有一定的性能优势;角度法应该说只有理论价值,实用性不佳;工程中最实用的当属射线法,局限性小,实现简单,多数时候只需要知道射线法就可以了。
不甘平庸的你,快来跟我一起充电吧,关注看风景,获取更多精彩内容。