python运动目标绘制轨迹_Python:NBA运动员的运动轨迹呈现

使用Python解析NBA官方API,获取球员运动数据,通过Seaborn和Matplotlib进行数据可视化,展示运动员的运动轨迹。文章介绍了如何设置画布风格、获取数据、处理数据并绘制轨迹图,特别展示了James Harden的运动轨迹。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:在微博上收藏了一个技术贴,作者是 Savvs Tjortjoglou(Twitter:@savvas_tj)。他之前的一篇NBA投篮绘图在内地网络上挺火的,几个微信公号都有推,今天看的这一个帖子原题是:How to Track NBA Player Movements in

首先,可以进入NBA官网的stats看看,非常详细的统计,主菜单栏里Stats中有一个SportVU Player Tracking,当然还有Team Tracking。里面的可视化呈现相当美观。Intro里写到:Player Tracking is the latest example of how technology and statistics are changing the way we understand the game of basketball.

对于美国的运动数据统计能力感到惊讶!但强大的Python当然可以在自我理解下处理这些丰富的数据。

Part 1.引入模块

导入的模块大多数是比较常用的。其中的seaborn是一个统计

import seaborn as sns, numpy as np, requests, pandas as pd

%matplotlib inline

import matplotlib.pyplot as plt

from IPython.display import IFrame

因为是可视化,接下来设计画布风格和颜色,直接参考seaborn文档,五种风格分别是:darkgrid,whitegrid,dark,white,ticks。写以下两行代码:

sns.set_color_codes()

sns.set_style(‘white’)

接着,用IFrame导入一个网站上的既有Demo。

IFrame可以将任何网页导入到IPython Notebook,其他的IDE应该也有类似的嵌入工具。

8a63f4a21d6d7b2be96f3f77f8607f77.png

是个动态小视频,发现IFrame这么好玩,我接下来导入一个自己原来的Tableau作品,效果也是同样好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值