高数七重积分的总结_高数下册总结

第四讲 向量代数、多元函数微分与空间解析几何

一、理论要求 1.向量代数 理解向量的概念(单位向量、方向余弦、模) 了解两个向量平行、垂直的条件 向量计算的几何意义与坐标表示

理解二元函数的几何意义、连续、极限概念,闭域性质 理解偏导数、全微分概念 能熟练求偏导数、全微分

熟练掌握复合函数与隐函数求导法

理解多元函数极值的求法,会用Lagrange乘数法求极值 掌握曲线的切线与法平面、曲面的切平面与法线的求法 会求平面、直线方程与点线距离、点面距离 2.多元函数微分

3.多元微分应用 4.空间解析几何

二、题型与解法 A.求偏导、全微分

1.f(x)有二阶连续偏导,zf(exsiny)满足zxxzyyez,求

''''2xf(x)

解:f''f0f(u)c1euc2eu

12z2.zf(xy)y(xy),求

xxy3.yy(x),zz(x)由zxf(xy),F(x,y,z)0决定,求dz/dx

B.空间几何问题

4.求和。 解:x/2xyza上任意点的切平面与三个坐标轴的截距之

x0y/y0z/z0ada

225.曲面x2y3z21在点(1,2,2)处的法线方程。

C.极值问题

2226.设zz(x,y)是由x6xy10y2yzz180确定的函数,求zz(x,y)的极值点与极值。

三、补充习题(作业)

xy2z1.zf(xy,)g(),求

yxxy2.zf(xy,xyzg()),求 yxx3.zu,ulnxy,arctan22y,求dz

x第五讲 多元函数的积分

一、理论要求 1.重积分

2.曲线积分

3.曲面积分

二、题型与解法 A.重积分计算 熟悉

二、三重积分的计算方法(直角、极、柱、球)

b2(x)f(x,y)dxdyadxyy1(x)f(x,y)dy D2r2()1dr1()f(r,)rdrby2(x)z2(x,y)adxy1(x)dyz1(x,y)f(x,y,z)dzf(x,y,z)dxdydzVz2z1dz2(z)r2(z,)1(z)dr1(z,)f(r,,z)rdr 2()r2(,),)r2d1()dr1(,)f(r,sindr会用重积分解决简单几何物理问题(体积、曲面面积、重心、转动惯量)zf(x,y)A1z'22Dxz'ydxdy

理解两类曲线积分的概念、性质、关系,掌握两类曲线积分的计算方法

L:yy(x)bf(x,y(x))1y'2axdxLf(x,y)dlL:xx(t)yy(t)f(x(t),y(t))x'2ty'2tdt

L:rr()f(rcos,rsin)r2r'2d熟悉Green公式,会用平面曲线积分与路径无关的条件

理解两类曲面积分的概念(质量、通量)、关系 熟悉Gauss与Stokes公式,会计算两类曲面积分

S:zz(x,y)f(x,y,z)dSf(x,y,z(x,y))1z'22xz'ydxdyGauss:DxySEdSEdV(通量,散度) Stokes:VLFdrS(F)dS(旋度)22y21.I(xy)dV,为平面曲线2z0绕z轴旋转一周与z=8

x的围域。 解:I822822z0dzx2y22z(xy)dxdy0dz0d0r2rdr10243

2.Ix2y24a2x2y22Ddxdy,D为yaa2x2(a0)与yx围域。(Ia(21) 162x2y,1x2,0yx3.f(x,y),

0,其他求

Df(x,y)dxdy,D:x2y22x

(49/20) B.曲线、曲面积分 4.I(exsinyb(xy))dx(excosyax)dy

L L从A(2a,0)沿y2axx2至O(0,0)

解:令L1从O沿y0至A

ILL1(ba)dxdy(bx)dx(L1D02a22)a2b2a3

5.IxdyydxL4x2y2,L为以(1,0)为中心,R(1)为半径的圆周正向。

解:取包含(0,0)的正向L1:

2xrcos,

yrsinLLL1LL10L1

6.对空间x>0内任意光滑有向闭曲面S, Sxf(x)dydzxyf(x)dzdxe2xzdxdy0,且f(x)在x>0有连续一

x0阶导数,limf(x)1,求f(x)。

0FdSFdV(f(x)xf'(x)xf(x)e2x)dV 解:

s112xexx(e1)

y'(1)yeyxxx第七讲 无穷级数

一、理论要求

1.收敛性判别 级数敛散性质与必要条件

常数项级数、几何级数、p级数敛散条件 正项级数的比较、比值、根式判别法 2.幂级数

3.Fourier级数 交错级数判别法

幂级数收敛半径、收敛区间与收敛域的求法

幂级数在收敛区间的基本性质(和函数连续、逐项微积分) Taylor与Maclaulin展开

了解Fourier级数概念与Dirichlet收敛定理 会求[l,l]的Fourier级数与[0,l]正余弦级数

篇一:高数下册总结

高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结:

二阶微分方程的解法小结:

非齐次方程y???py??qy?f(x)的特解y?

主要: 量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

二、多元函数微分学复习要点

1、显函数的偏导数的求法 在求

?z?x 量,对x求导,在求

?z?y 量,对y求导,所运

求导法则与求导公式. 2数的求法

u???x,y?,v???x,y?,则

?z?x ?z?u ?u?x ?z?v ?v?x ?z?y ?

的形式为:

一阶

1、可分离变、二阶常系数非齐次线性微分方程的特解

一、偏导数的求法 时,应将y看作常时,应将x看作常用的是一元函数的、复合函数的偏导设z?f?u,v?,, 3 ?z?u ? ?u?y ? ?z?v ? ?v?y 几种特殊情况:

1u???x?,v???x?,则2)z?f?x,v?,v???x,y?,则

?z?x dzdx???f?vdzdu???u?x ??z?v ?dvdx ?v?y ? ?f?x ?v?x ?z?y ? ?f?u ? 3则

3、隐函数求偏导数的求法 1)一个方程的情况

?z?x ? dzdu ? ?u?x ?z?y ? dzdu ? ?u?y 设z?z?x,y?是由方程f?x,y,z??0唯一确定的隐函数,则

?z?x fxfz ??

)z?f?u,v?,, )z?f?u?,u???x,y?, ?fz ?0?, ?z?y ?? fyfz ?fz ?0? 或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出

2)方程组的情况 ?z?x (或 ?z?y ). ?f?x,y,u,v??0?z?z )即可. 由方程组?两边同时对x(或y)求导解出(或

?x?y??gx,y,u,v?0?

二、全微分的求法 方法1:利用公式du? ?u?x dx? ?u?y dy? ?u?z dz 方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:

??z du???u? dz?? ?z?dx??x?? ?z?v?z?y dv dy

三、空间曲线的切线及空间曲面的法平面的求法

?x???t? ? 1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点 ?z???t??p0?x0,y0 ? ,z0?处的切线方向向量为t???t0?,? ?

?t0?,??t0??,切线方程为

x?x0 ??t0? ? y?y0 ? ?t0? ? z?z0 ? ?t0?

法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程为f? x,y,z??0,则在点p0?x0,y0,z0?处的法向量

?n? ?f x ,fy,fz ? p0 ,切平面方程为

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为 x?x0 fx?x0,y0,z0? ? y?y0 fy?x0,y0,z0? ? z?z0 fz?x0,y0,z0? 若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为

x?x0fx?x0,y0? ? y?y0fy?x0,y0? ?z?z0?1

四、多元函数极值(最值)的求法 1 无条件极值的求法

在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0, fy ?x,y??0点? x0,y0 ? a?fxx ?x0 ,y0 ? b?fxy ?x0 ,y0 ? c?fyy ?x0,y0?. 2 c?b1 ?x ,y?取得极值,且当a?0时有极大值,当a?0 2则f?x,y?在点?x0,y0?处无极值. 3) 若ac?b 2 ?0 ?x ,y?是否取得极值.

设函数z?f?x,y?,解出驻,记 , , )若a?0,则f 在点?x0,y0?处时有极小值.

) 若ac?b2?0,,不能判定f 在点?x0,y0?处 2 条件极值的求法

函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:

1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题. 2)拉格朗日乘数法

作辅助函数f?x,y??f?x,y?x,y?,其中?为参数,解方程组

篇二:高数下册总结(同济第六版) 高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结:

二阶微分方程的解法小结:

? 非齐次方程y???py??qy?f(x)的特解y的形式为:

主要: 一阶

1、可分离变量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

3、二阶常系数非齐次线性微分方程的特解

二、多元函数微分学复习要点

一、偏导数的求法

1、显函数的偏导数的求法 在求

?z?z时,应将y看作常量,对x求导,在求时,应将x看作常量,对y求导,所运?x?y 用的是一元函数的求导法则与求导公式.

2、复合函数的偏导数的求法

设z?f?u,v?,u???x,y?,v???x,y?,则

?z?z?u?z?v?z?z?u?z?v , ?x?u?x?v?x?y?u?y?v?y 几种特殊情况: 1)z?f?u,v?,u???x?,v???x?,则2)z?f dzdz?u?zdv dxdu?x?vdx?f?v ?x,v?则?x??x??v??x,

?z?f ?z?f?v?? ?y?u?y 3则

3、隐函数求偏导数的求法 1)一个方程的情况

?zdz?u?zdz?u, ?xdu?x?ydu?y 方程f?x,y,z??0唯一确定的隐函数,则

f?z ??x ?xfz ?fz ?z ?0? ?y fyfz ?fz ?0? 或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出 2由方程组? ?z?z( ?f?x,y,u,v??0?z?z 求导解出(或)即可. ?x?y?g?x,y,u,v??0 方法1:利用公式du? ?u?u?u

,v???x,y?,)z?f?u?,u???x,y?设z?z?x,y?是由, ?? )方程组的情况 或). ?x?y 两边同时对x(或y)

二、全微分的求法 dx?dy?dz ?x?y?z 方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:

?z??z du?dv??v??u dz?? ?z?z?dx?dy ?y???x

三、空间曲线的切线及空间曲面的法平面的求法

?x???t? ? 1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点

?z???t?? ? p0?x0,y0,z0?处的切线方向向量为t???t0?,??t0?,??t0?,切线方程为

?? x?x0y?y0z?z0 ?? ?t0?t0?t0法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程为f?x,y,z??0,则在点p0?x0,y0,z0?处的法向量

? n??fx,fy,fz? p0 ,切平面方程为

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为

x?x0y?y0z?z0 ?? fxx0,y0,z0fyx0,y0,z0fzx0,y0,z0 若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为

x?x0y?y0z?z0 ?? fxx0,y0fyx0,y0?1

四、多元函数极值(最值)的求法 1 无条件极值的求法

设函数z?f?x,y?在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0,

fy?x,y??0,解出驻点?x0,y0? ,记a?fxx?x0,y0?,b?fxy?x0,y0?,

c?fyy?x0,y0?. c?b1)若a 时有极小值. 2) 若ac?b2?0,则f?x,y?在点?x0,y0?处无极值. 3) 若ac?b?0,不能判定f?x,y?在点?x0,y0?处是否取得极值. 2 2 ?0,则f?x,y?在点?x0,y0?处取得极值,且当a?0时有极大值,当a?0 2 条件极值的求法

函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:

1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题. 2)拉格朗日乘数法

作辅助函数f?x,y??f?x,y?x,y?,其中?为参数,解方程组 篇三:高数下册公式总结

第八章 向量与解析几何

第十章 重积分

第十一章曲线积分与曲面积分

篇四:高数下册积分方法总结

积分方法大盘点

现把我们学了的积分方法做个大总结。

1、二重积分

1.1 x型区域上二重积分(必须的基本方法)

(1)后x先y积分,d往x轴上的投影得区间[a,b]; (2)x [a,b],x=x截d得截线y1(x)#yy2(x)(小y边界y=y1(x) 大y边界y=y2(x));

(3)b y(x)蝌f(x,y)dxdy= 蝌dx 2f(x,y)dya yd 1(x) 1.2 y型区域上二重积分(必须的基本方法)

(1)后y先x积分,d往y轴上的投影得区间[c,d]; (2)y [c,d],y=y截d得截线x1(y)#xx2(y)(小x边界x=x1(y) 大x边界x=x2(y));

(3)d x蝌f(x,y)dxdy= 蝌dy 2(y)f(x,y)dxc x d 1(y) 1.2 极坐标二重积分(为简单的方法)

(1)总是后q先r积分; (2)b r蝌f(x,y)ds= 蝌dq 2(q)f(rcosq,rsinq)rdra r(q) d 1其中,在d上a是最小的q,b是最大的q;q [a,b],射线q=q截d得截线r1(q)#r r2(q)(小r边界r=r1(q)大r边界r=r2(q))。用坐标关系

x=rcosq,y=rsinq和面积元素ds=dxdy=rdqdr代入(多一个因子r)。

当积分区域d的边界有圆弧,或被积函数有x2+y2 时,用极坐标计算二重

积分特别简单。

离 散

数 学

2、三重积分 2.1 二套一方法(必须的基本方法) (1)几何准备

(i) 将积分区域w投影到xoy面,得投影区域dxy;

(ii) 以dxy的边界曲线为准线,作一个母线平行于z轴的柱面.柱面将闭区域w的边界曲面分割为上、下两片曲面s2:z=z2(x,y()大z边界);

s 1 :z=z1(x,y()小z边界)

((x,y) dxy,过(x,y)点平行于z轴的直线截w得截线z1(x,y)#z z2(x,y))

; (2)z蝌蝌 f(x,y,z)dxdydz=蝌

dxdy2(x,y)f(x,y,z)dzz。

w d1(x,y) xy 还有两种(w往xoz或yoz面投影)类似的二套一方法(举一反三)。 2.2 一套二方法(为简单的方法) (1)几何准备

(i)把w往z投影得轾犏臌 c,d; (ii)任意给定z?轾犏臌

c,d,用平面z=z截w得截面(与z有关)dz; (2)d蝌蝌

f(x,y,z)dxdydz=dz f(x,y,z)dxdy, c 蝌 w dz 还有两种(w往x或y轴投影)类似的一套二方法(举一反三)。 2.3 柱面坐标计算三重积分(为简单的方法)

(1)把积分写成二套一zx,y)蝌蝌

f(x,y,z)dxdydz=蝌

dxdy2(f(x,y,z)dzz,y) w d1(xxy (2)用极坐标计算外层的二重积分

z蝌蝌f(x,y,z)dv= 蝌

dxdy2(x,y)f(x,y,z)dz zw d1(x,y) xyb r2(q)zrcosq,rsinq) = 蝌dqrdr f(rcosq,rsinq,z)dz a r 2(1(q) z 1 (rcosq,rsinq) (注意:里层的上下限也要用x=rcosq,y=rsinq代入)。(当用极坐标计算

外层二重积分简单时。)

还有两种(w往xoz或yoz面投影的二套一)类似的极坐标计算方法(举

第1章

集 合

离 散

数 学

2.3 三重积分(为简单的方法)

x=rcosqsinjy,=rsiqn sjinz=,r jc dv=dxdydz=r 2 sinjdrdqdj个因子r 2 sinj

f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdrdqdj w w 下限变成三次积分(总是先r后j最后q积分)

f(x,y,z)dvw b jr dq2(q)dj 2(q,j)

一反三)。

球面坐标计算(1)用坐标关系和o体积元素 (多一)代入

蝌蝌f(x,y,z)dv=; (2)三种情况定上蝌

=蝌f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdr a j 1(q) r 1 (q,j) 当w是课堂讲的三种情况或被积函数有x2+y2+z2时用球面坐标计算简单。 第1章

集 合

3曲线积分 3.1 平面情形

(1)准备 ?l:?x=x(t), ?y=y(t)(t?[a,b])ds=

?? ,f(x,y)ds= f(x(t),y(tt l a l:?l:y=y(x)(x [a,b])时用x作?í

x=x ?(x?[a,b])当??y=y(x)ì?l:x= x(y)( y [c,数l:?í

x=x(y) ??? y=y(y?[c,d])3.2 空间情形

、第一类对弧长的ì

í

,(2)代入b蝌。 ì

当参数;时用d]y作参。 ì??x=x(t)

(1)准备 l:? ? íy=y(t)(t [a,b? ]),ds=

z=z(t)蝌f(x,y,z)ds= f(x(t),y(t),z(tt l a y=y(x)??x=x ?(x?[a,b])作参数l:?x)x( ab[,;??z=z(x)í?y=y( ] ?? z=z(x) l:?? x=x(y) ?z=z(y(y?[c,d])时用y作参数

l:?? )? y=y(y [c,d]) z=z(y)ì?x=x(??x=x(z) l:? z) ?(z?[c,d])作参数l:??í?? y=y(z)? y=y(z)(z [c,d])。 z=z 间的特例。

篇五:高数下册复习知识点总结

下册复习知识点总结:

(2)代入b。ìì 当l:???í时用x当?? ìì??x=x(y) í í?? ;当 ìí 时用z平面是空高数 8空间解析几乎与向量代数

1. 给定向量的坐标表达式,如何表示单位向量、方向数与方向余弦、投影。

2. 向量的数量积、向量积的定义式与坐标式,掌握两个向量垂直和平行的条件。 3. 了解常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面方程。空间曲线在坐标平面上的投影方程。

4. 平面方程和直线方程及其求法。

5. 平面与平面、平面与直线、直线与直线之间的夹角,利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

6. 点到直线以及点到平面的距离。

9 多元函数微分法及其应用

1. 有关偏导数和全微分的求解方法,偏导要求求到二阶。

2. 复合函数的链式法则,隐函数求导公式和方法。

3. 空间曲线的切线和法平面方程,空间曲面的切平面与法线方程;函数沿着一条直线的方向导数与梯度。 4. 利用充分条件判断函数的极值问题;利用拉格朗日乘子法(即条件极值)分析实际问题或给定函数的最值问题。

10 重积分

1. 二重积分直角坐标交换积分次序;选择合适的坐标系计算二重积分。

2. 选择合适的坐标系计算三重积分。

3. 利用二重积分计算曲面的面积;利用三重积分计算立体体积;

4. 利用质心和转动惯量公式求解问题。

11曲面积分与曲线积分

1. 两类曲线积分的计算与联系;

2. 两类曲面积分的计算与联系;

3. 格林公式和高斯公式的应用。

高数同济版下 高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶

微分方程的解法小结:

高数同济版下 二阶微分方程的解法小结:

非齐次方程的特解的形式为:

高数同济版下 主要 一阶

1、可分离变量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

3、二阶常系数非齐次线性微分方程的特解

二、多元函数微分学复习要点

一、偏导数的求法

1、显函数的偏导数的求法 时,应将看作常量,对求导,在求时,应将看作常量,对求导,所运 用的是一元函数的求导法则与求导公式

2、复合函数的偏导数的求法 设,,,则 , 几种特殊情况: 1),,,则2) ,,则 3),则

3、隐函数求偏导数的求法 1)一个方程的情况 , 设是由方程唯一确定的隐函数,则 ,

高数同济版下 或者视,由方程两边同时对 2)方程组的情况 由方程组 . 两边同时对求导解出即可

二、全微分的求法 方法1:利用公式 方法2:直接两边同时求微分,解出即可.其中要注意应用微分形式的不变性:

三、空间曲线的切线及空间曲面的法平面的求法 1)设空间曲线Г的参数方程为 ,则当时,在曲线上对应 处的切线方向向量为,切线方程为 法平面方程为 2)若曲面的方程为,则在点处的法向 ,切平面方程为 法线方程为 高数同济版下 若曲面的方程为,则在点处的法向 ,切平面方程为 法线方程为

四、多元函数极值(最值)的求法 1 无条件极值的求法 设函数在点的某邻域内具有二阶连续偏导数,由 ,解出驻点 ,记, 1)若 时有极小值 2) 若,则在点处无极值 3) 若,不能判定在点处是否取得极值 ,则在点处取得极值,且当时有极大值,当 2 条件极值的求法 函数在满足条件下极值的方法如下: 1)化为无条件极值:若能从条件解出代入中,则使函数成为一元函数无条件的极值问题 2)拉格朗日乘数法 作辅助函数,其中为参数,解方程组 高数同济版下 求出驻点坐标,则驻点可能是条件极值点 3 最大值与最小值的求法 若多元函数在闭区域上连续,求出函数在区域内部的驻点,计算出在这些点处的函数值,并与区域的边界上的最大(最小)值比较,最大(最小)者,就是最大(最小)值. 主要

1、偏导数的求法与全微分的求法;

2、空间曲线的切线及空间曲面的法平面的求法

3、最大值与最小值的求法

三、多元函数积分学复习要点 七种积分的概念、计算方法及应用如下表所示:

高数同济版下 高数同济版下 *定积分的几何应用 定积分应用的常用公式: (1)面积 (2)体积 (型区域的面积) (横截面面积已知的立体体积) (所围图形绕 的立体体积) (所围图形绕 体体积) (所围图形绕轴 的立体体积)

综述:高数下册,共有如下几类积分:二重积分,三重积分,第一类线积分,第二类线积分,第一类面积分,第二类面积分。其中,除线积分外,个人认为,拿到题后,首先应用对称性把运算简化,线积分的对称性,不太常用,可以参照面积分的对称性,将积分曲面换成积分曲线即可,恕不赘述。另外要注意线积分和面积分的方向性,线积分以逆时针为正方向,面积分以坐标轴正向为正方向。 二重积分 对称性:

积分区间D关于X轴对称:被积函数是关于Y的奇函数,则结果为0:

被积函数是关于Y的偶函数,则结果为在一半区间上积分的2倍 方法:分别对x、y积分,将其中一个变量写成另一个的表达形式||极坐标换元 三重积分 对称性:

积分区间Ω关于xy面对称:被积函数是关于z的奇函数,则结果为0;

被积函数是关于z的偶函数,则结果为在一半区间上积分的2倍 方法:先重后单||先单后重(极坐标)||柱坐标||球坐标

第一类线积分

x,y,z型:具有关于参数t的表达试,用基本公式,转化成关于t的积分

x,y型:排除上一种条件的话,通常将y表示为关于x的函数,转化成关于x的积分

第二类线积分 方法:

1、用曲线的切线的方向角余弦,转化成第一类线积分

2、有参数t,可以转化成关于t的积分

3、将y表示为关于x的函数,转化成关于x的积分

4、封闭曲线,通常自己构造,可采用格林公式转化为二重积分 另:注意与路径无关的积分

第一类面积分 对称性:

积分曲面关于XY面对称:被积函数是关于z的奇函数,则结果为0:

被积函数是关于z的偶函数,则结果为在一半曲面上积分的2倍

计算方法:常规的话,只有一种,转化为关于x或y或z的积分。详见书本上的公式。

第二类面积分 对称性:

积分曲面关于XY面对称:被积函数是关于z的偶函数,则结果为0:

被积函数是关于z的奇函数,则结果为在一半曲面上积分的2倍 (注意区别于第一类) 计算方法:

1、用曲面的切线的方向角余弦,转化成第一类面积分

2、转化为二重积分,直接在前面添正负号即可

3、封闭曲面,可以用高斯公式,转化为三重积分,一般封闭曲面都是人为构造的,所以注意减掉构造面,并注意方向

4、斯托克斯公式,转化为第二类线积分,不常用

PS:用函数表达式,可以化简线面积分的被积函数,另有积分相关考点,旋度,散度,质量,质心,转动惯量,求曲面侧面面积,顶面面积,曲顶柱体体积~~~多多复习,牢记公式,一定可以渡过积分这个难关~

高等数学下册公式总结

1、N维空间中两点之间的距离公式:p(x1,x2,...,xn),Q(y1,y2,...,yn)的距离

PQ(x1y1)2(x2y2)2...(xnyn)2

2、多元函数zf(x,y)求偏导时,对谁求偏导,就意味着其它的变量都暂时

看作常量。比如,就可以了。 z表示对x求偏导,计算时把y 当作常量,只对x求导 x2z2z

3、二阶混合偏导数在偏导数连续的条件下与求导次序无关,即。 xyyx

4、多元函数zf(x,y)的全微分公式: dzzzdxdy。 xy

5、复合函数zf(u,v),u(t),v(t),其导数公式:

dzzduzdv。 dtudtvdtFXdy,Fy分别表示对x,y

6、隐函数F(x,y)=0的求导公式: ,其中FxdXFy求偏导数。

方程组的情形:{F(x,y,u,v)0的各个偏导数是: G(x,y,u,v)0FFxvGGuvxv,xxFFuvGGuvFFuxGGuux,yFFuvGGuvFFyvGGyvFFuvGGuv,

v。 yFFuvGGuvFFyuGGuy

7、曲线的参数方程是:x(t),y(t),z(t),则该曲线过点

M(x0,y0,z0)的法平面方程是:

(t0)(xx0)(t0)(yy0)(t0)(zz0)0

切线方程是:(xx0)(yy0)(zz0)。 (t0)(t0)(t0)

8、曲面方程F(x,y,z)=0在点M(x0,y0,z0)处的 法线方程是: (xx0)(yy0)(zz0), FxFyFz(xx0)Fy(yy0)Fz(zz0)0。 切平面方程是:Fx

9、求多元函数z=f(x , y)极值步骤:

第一步:求出函数对x , y 的偏导数,并求出各个偏导数为零时的对应的x,y的值 第二步:求出fxx(x0,y0)A,fxy(x0,y0)B,fyy(x0,y0)C

第三步:判断AC-B2的符号,若AC-B2大于零,则存在极值,且当A小于零是极大值,当A大于零是极小值;若AC-B2小于零则无极值;若AC-B2等于零则无法判断

10、二重积分的性质: (1)(2)(3) kf(x,y)dkf(x,y)d

DD[f(x,y)g(x,y)]df(x,y)dg(x,y)d

DDDDD1D2f(x,y)df(x,y)df(x,y)d

(4)若f(x,y)g(x,y),则(5)

f(x,y)dg(x,y)d

DDds,其中s为积分区域D的面积

D(6)mf(x,y)M,则ms(7)积分中值定理:

f(x,y)dMs

Df(x,y)dsf(,),其中(,)是区域D中的点

DdP2(y)

11、双重积分总可以化简为二次积分(先对y,后对x的积分或先对x,后对y的积分形式)bP2(x)f(x,y)ddxDaP1(x)f(x,y)dydycP1(y)f(x,y)dx,有的积分可以随意选择积分次序,但是做题的复杂性会出现不同,这时选择积分次序就比较重要,主要依据通过积分区域和被积函数来确定

12、双重积分转化为二次积分进行运算时,对谁积分,就把另外的变量都看成常量,可以按照求一元函数定积分的方法进行求解,包括凑微分、换元、分步等方法

13、曲线、曲面积分:

(1)对弧长的曲线积分的计算方法:设函数f(x,y)在曲线弧L上有定义且连续,L的参数方程为x(t)y(t),(t),则

Lf(x,y)dsf[(t),(t)]2(t)2(t)dt

(2)格林公式:(DQP)dxdyPdxQdy xyLL

14、向量的加法与数乘运算:a(x1,y1,z1),b(x2,y2,z2),则有ka(kx1,ky1,kz1), xyzab(x1x2,y1y2,z1z2),若ab,则111

x2y2z2

15、向量的模、数量积、向量积:若a(x1,y1,z1),b(x2,y2,z2),则向量a的模长222ax1y1z1;数量积(向量之间可以交换顺序,其结果是一个数值)ab=

bax1x2y1y2z1z2=baabcosa,b,其中a,b表示向量b,a的夹角,且若ab,则有ab=0;向量积(向量之间不可以交换顺序,其结果仍是一个向量)ijkabx1y1z1(y1z2y2z1)i(x2z1x1z2)j(x1y2x2y1)k,其中i,j,k是x轴、x2y2z2y轴、z轴的方向向量

16、常数项无穷级数unu1u2u3...un...,令snu1u2u3...un称为无n1穷级数的部分和,若limsns,则称改级数收敛,否则称其为发散的。其中关于无穷级数x的一个必要非充分地定理是:若un收敛,则必有limun0

n1x

17、三种特殊的无穷级数: (1)调和级数1是发散的,无须证明就可以直接引用 n1nn(2)几何级数aq,当q1时收敛,当q1时发散

n1(3)p级数1,当p1时收敛,当p1时发散 pn1nn1

18、正项级数un的判敛方法:

(1)比较判敛法:若存在两个正项级数un,vn,且有vnun,若un收敛,则vn收

n1n1敛;若vn发散,则un发散

(2)比较判敛法的极限形式:若limunl,(l0),则un和vn具有相同的敛散性

xvnun1l,若l1,则原级数收敛,若l1,则原级

xun(3)比值判敛法:对于un, limn1数发散

19、交错级数(1)n1n1un的判敛方法:同时满足unun1及limun0,则级数收敛,否

x则原级数发散

20、绝对收敛和条件收敛:对于un,若un收敛,则称其绝对收敛;若un发散,

n1n

1n1



但是un收敛,则称其条件收敛

n1

21、函数项无穷级数形如:un(x)u1(x)u2(x)u3(x)...un(x)...,通常讨论的是

n1幂级数形如:anxa0a1xa2xa3x...anx...,

n0n23n(1)收敛半径及收敛区间:liman11,则收敛半径R,收敛区间则为(R,R),但

xan是要注意的是,收敛区间的端点是否收敛需要用常数项级数判敛方法验证

(2n1)xnn-1x(2)几种常见函数的幂级数展开式:e,sinx,(-1)n0n!n1(2n1)!x11x2nnx,(1)nxn ,cosx(1)n01xn0(2n)!1xn0n

22、常微分方程的类型及解题方法:

(1)可分离变量的微分方程:yf(x,y),总是可以分离变量化简为式,然后等式两边同时积分,即可求出所需的解

(2)齐次方程:yf(x,y),不同的是,等式右端的式子总是可以化简为f()的形式,令

dydx的形f(y)f(x)yxyu,则原方程化简为可分离变量方程形式uxuf(u)来求解 x(3)一阶线性微分方程:形如yp(x)yf(x)的方程,求解时首先求出该方程对应的齐次方程yp(x)y0的解ycQ(x),然后使用常熟变易法,令cu(x),把原方程的解yu(x)Q(x)带入原方程,求出u(x),再带入yu(x)Q(x)中,即求出所需的解

(4)全微分方程:形如p(x,y)dxQ(x,y)dy0的方程,只要满足

xyp(x,y)Q(x,y),yx则称其为全微分方程,其解为u0p(x,y)dxQ(x,y)dy

0(5)二阶微分方程的可降阶的三种微分方程:

第一种:yf(x)的形式,只需对方程连续两次积分就可以求出方程的解

第二种:yf(x,y)的形式,首先令yz,则原方程降阶为可分离变量的一阶微分方程zf(x,z)的形式,继续求解即可

第三种:yf(y,y)的形式,同样令yz,由于yzdzdzdydzy,所以dxdydxdy原方程转化为一阶微分方程

dzzf(y,z)的形式,继续求解即可 dy(6)二阶常系数齐次微分方程:ypyqy0,求解时首先求出该方程对应的特征方

r1x程r2prq0的解r1,r2,若实根rc2er2x;若实根r1r2,则解1r2,则解为yc1e为y(c1c2x)e1;若为虚根abi,则解为yeax(c1cosbxc2sinbx)

rx(8)二阶常系数非齐次微分方程:ypyqyPm(x)e,求解时先按(7)的方法求其rx对应的齐次微分方程的通解y1,然后设出原方程的特解y=xQm(x)erx,其中Qm(x)是和P含有相应的未知系数,而k根据特征方程的解r1,r2与r的关系取值,m(x)同次的多项式,若r与特征根不相等,则k取0;若r和一个特征根相等,则k取1;若r和特征根都相等,则k取2,将特解代入原方程求出相应的未知系数,最终原方程的解即通解加上特解,即

kyy1y

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页